244th Avenue NE To Fall City/Snoqualmie River

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION NORTHWEST REGION

SR 202 Targeted Study - East King County

Approved By:

Brian D. Nielsen
Brian D. Nielsen (Oct 13, 2022 13:45 PDT)
Brian Nielsen
Regional Administrator - NW Region

Oct 13, 2022

Concurrence:

KerriWoehler
Kerri Woehler
Director - Multimodal Planning and Data Division

Title VI Notice to Public

It is the Washington State Department of Transportation's (WSDOT) policy to assure that no person shall, on the grounds of race, color, national origin, as provided by Title VI of the Civil Rights Act of 1964, be excluded from participation in, be denied the benefits of, or be otherwise discriminated against under any of its programs and activities. Any person who believes his/her Title VI protection has been violated, may file a complaint with WSDOT's Office of Equity and Civil Rights (OECR). For additional information regarding Title VI complaint procedures and/or information regarding our non-discrimination obligations, please contact OECR's Title VI Coordinator at (360) 705-7090.

Americans with Disabilities Act (ADA) Information

This material can be made available in an alternate format by emailing the Office of Equity and Civil Rights at wsdotada@wsdot.wa.gov or by calling toll free, 855-362-4ADA(4232). Persons who are deaf or hard of hearing may make a request by calling the Washington State Relay at 711.

Notificación de Titulo VI al Público

La política del Departamento de Transporte del Estado de Washington (Washington State Department of Transportation, WSDOT) es garantizar que ninguna persona, por motivos de raza, color u origen nacional, según lo dispuesto en el Título VI de la Ley de Derechos Civiles de 1964, sea excluida de la participación, se le nieguen los beneficios o se le discrimine de otro modo en cualquiera de sus programas y actividades. Cualquier persona que considere que se ha violado su protección del Título VI puede presentar una queja ante la Oficina de Equidad y Derechos Civiles (Office of Equity and Civil Rights, OECR) del WSDOT. Para obtener más información sobre los procedimientos de queja del Título VI o información sobre nuestras obligaciones contra la discriminación, comuníquese con el coordinador del Título VI de la OECR al (360) 705-7090.

Información de la Ley sobre Estadounidenses con Discapacidades (ADA, por sus siglas en inglés)

Este material puede estar disponible en un formato alternativo al enviar un correo electrónico a la Oficina de Equidad y Derechos Civiles a wsdotada@wsdot.wa.gov o llamando a la línea sin cargo 855-362-4ADA(4232). Personas sordas o con discapacidad auditiva pueden solicitar la misma información llamando al Washington State Relay al 711.

Table of contents

1.0 Introduction 4
1.1 Background 4
1.2 Study purpose 6
Study objectives 6
Rural Segment - 244th Avenue Northeast to 324th Avenue Southeast/Fall City (Urban) West River Road intersection 6
2.0 Study structure 6
2.1 Study process 7
3.0 Community engagement 8
3.1 Community engagement approach 8
3.2 Virtual engagement 8
3.2.1 Study webpage 8
3.2.2 Online open house 8
3.2.3 Online survey 9
3.2.4 Fall City Community Association meetings 9
3.3 Tribal coordination 10
3.4 Stakeholder engagement 10
4.0 Technical analysis and recommended improvement concepts 7
4.1 244th Avenue Northeast to 324th Avenue Southeast (Rural) 7
4.1.1 Safety strategies and concept development 7
4.1.2 Corridor assessment 8
Northeast Ames Lake Road Intersection (Milepost 13.83) 9
Northeast Tolt Hill Road Intersection (Milepost 15.50-15.60) 10
264th Avenue Northeast (Milepost 14.45) 11
Southeast 8th Street (Milepost 17.21) 12
Southeast 31st Street (Milepost 19.06) 12
308th Avenue Southeast (Milepost 19.45) 12
4.1.3 Planning-level cost estimates 13
4.2 Fall City 13
4.2.1 Western Segment of Fall City between 324th Avenue SE and 332nd Place SE 15
4.2.2 332nd Place SE to Preston-Fall City Road and the Fall City Business District 17
4.2.3 Performance screening metrics 19
4.2.4 Intersection-Level Assessment 20
334th Place SE and SE 42nd Place 21
Preston-Fall City Road. 23
4.2.5 Planning-level cost estimates 24
4.2.6 Final concept screening 24
5.0 Recommendations and implementation 26
5.1 Concept packages 26
5.2 Implementation costs and timeframe. 27
5.3 Responsibilities and next steps 28
Puget Sound Regional Council 29
Washington State Department of Transportation 29
Federal funding 30

1.0 Introduction

1.1 Background

Figure 1.2. A map of the SR 202 corridor - highlighting the study area

State Route 202 (SR 202) is a two-lane state highway in eastern King County, approximately 30 miles in length. It extends from Woodinville in the west to North Bend in the east, and travels through a mix of rural and urban areas in Redmond, Sammamish, Fall City, and Snoqualmie, serving as a vital transportation link for the rural communities of Fall City, Snoqualmie, and North Bend.

In the summer of 2020, the WSDOT Management of Mobility Planning Division (MoM Division) began to study this portion of SR 202 between 244th Avenue NE and the Snoqualmie River just north of Preston-Fall City Road in Fall City in two phases.

The two segments of SR 202 here are located immediately to the east of a previous SR 202 Corridor Planning Study (CPS) which assessed needs and future conditions of SR 202 between East Lake Sammamish Parkway in Redmond and 244th Avenue NE, southeast of the city of Sammamish.

The rural segment is shown in blue in Figure 1.1 and is located between 244th Avenue Northeast and 324th Avenue Southeast in rural King County, as a high-speed, two-lane highway. This segment was highlighted for review of the intersections due to the area's recent growth and feedback from the community which expressed concerns following two fatal crashes in the summer of 2019. The intersections at Ames Lake Road and Northeast Tolt Hill Road in particular were highlighted for their history of crashes and safety concerns.

The urban segment is shown in orange in Figure 1.1 and passes through the census designated place of Fall City before crossing the Snoqualmie River and continuing southeast towards the town of Snoqualmie. The business district, which is popular with visitors recreating on the river and frequenting the town's restaurants and cafés, lacks separated pedestrian facilities. There is a jersey barrier is present on the west side of the bridge heading north over the Snoqualmie River before the route transitions to an at-grade pedestrian path indicated by pavement markings.

The Puget Sound Regional Council's (PSRC) regional transportation improvement plan (TIP) has identified one project on SR 202 and within the study area. It is "Evans Creek Vicinity to SE Fish Hatchery Road Stormwater Retrofit" (page 540 of the TIP, Project I.D. \#WDNW - 2059). It should be noted that this project is not relevant to the near-term operations, safety, and active transportation focus of this targeted study. Other than this project there are no other references to SR 202 in either the TIP or PSRC's regional transportation plan.

Additionally, King County's Transportation Needs Report (2020) does not identify any projects directly on SR 202; though there are guardrail and bridge replacement projects identified near the SR 202 corridor.

1.2 Study purpose

In cooperation with study partners, WSDOT developed a problem statement to guide the development of this study.

SR 202 in rural King County between the intersections of 244th Avenue Northeast and 324th Avenue Southeast has operational and safety performance issues. SR 202 in Fall City lacks complete active transportation facilities and has documented performance issues.

Study objectives

The goals of this study are to assess the performance of safety, multimodal access, and improved accessibility for all corridor users, and then provide strategies to address the identified performance gaps.

Rural Segment - 244th Avenue Northeast to 324th Avenue Southeast/West River Road intersection

This phase focused on multimodal safety performance, especially at intersections.

Urban segment - Fall City Segment - 324th Avenue Southeast to the Snoqualmie River

 This phase segment included portions of SR 202 leading into and through the Fall City community. The identified performance issues included pedestrian and bicycle safety, improved intersection designs and additional accessibility needs in the businesses district.The timeframe of this analysis is near/mid-term (zero to six years and up to 12 years).

2.0 Study structure

This study documents the overall process WSDOT followed including how community engagement informed concept development and screening. It identifies performance gaps on the SR 202 corridor between 244th Avenue Northeast and the Snoqualmie River and serves as an action plan for implementing recommended concepts packages into project development and ultimately construction.

The final chapter includes recommendations for next steps and implementation actions for WSDOT and study partners. It also includes a summary of potential grant funding sources. The recommendations in this report are not a guarantee of any action or funding from WSDOT. WSDOT will consider strategies identified when making determinations on capital improvements within its project development processes. WSDOT may also be directed to fund strategies or portions of strategies in this plan by the Washington State Legislature. As funding becomes available to further develop the strategies, WSDOT will initiate formal environmental review.

2.1 Study process

Using community and stakeholder input WSDOT conducted a high-level assessment of multimodal safety, access, and environmental performance gaps for the SR 202 corridor. That work included:

- Existing conditions assessment including current traffic volumes, five-year crash history (2014-2019), documented existing roadway facilities geometry, active transportation facilities, transit service, environmental features and sensitive areas, and other relevant existing conditions.
- Community engagement assessment of the concerns of the public and stakeholders.

WSDOT used the assessments to develop a series of concepts. These concepts were screened for feasibility and how each met the studies' objectives. The concepts were then packaged into near-term ($0-6$ years) and mid-range (6-15 years) implementation time frames with planninglevel cost estimates. Concepts that were either deemed infeasible due to high costs, low benefit, or an inability to fund them in the future, were dismissed. The concept development in this study incorporated appropriate near-term (0-6 year) Transportation System Management and Operations (TSMO) strategies to address existing performance gaps at key SR 202 intersections and segments.

3.0 Community engagement

3.1 Community engagement approach

Community engagement is a key component of corridor planning at WSDOT because it helps define performance issues by providing opportunities for the communities to express their concerns and values. WSDOT uses this community feedback when assessing which multimodal improvement concepts should be advanced for future consideration. This section describes the overall approach and methodology for community engagement used in this study.

Due to the COVID-19 pandemic, all public involvement was conducted virtually through online meetings, a study website, and virtual town-hall meetings. Given that the two segments of SR 202 being analyzed are contiguous, it was determined the community engagement would be conducted in a joint (consolidated) fashion for both phases of the study, owing to limited staff resources and budget.

3.2 Virtual engagement

3.2.1 Study webpage

WSDOT created a study webpage to provide information and updates on the studies' progress. Supporting data and the completed study will also be housed on the webpage.

Contact information for the corridor studies manager and Region Traffic Engineer were also provided on the webpage.

3.2.2 Online open house

A key component of the community engagement was the development of an Online Open House in lieu of live, in-person study open house.

The open house presented information establishing the study purpose and existing conditions (traffic volumes, safety information, facility geometry, etc.) before WSDOT solicited public comment and concerns about both phases of the study. The multi-page open house allowed participants to scroll a variety of topics including maps, summaries of existing corridor conditions, and 5-year crash data on SR 202 before they were provided a link to the (joint) study web-survey.

There were 765 unique visits to the SR 202 corridor studies online open house during the open house, which was live for the first three weeks of December 2020. Additional information on the SR 202 Corridor Studies online open house can be found in Appendix \#2.

3.2.3 Online survey

An online survey was developed to identify community priorities. The survey consisted of 20 questions seeking information about needs, issues, and user concerns for the two SR 202 Corridor Study segments rural and urban (Fall City).

The online survey was open during the first three weeks of December 2020. There were 724 individual completed survey responses during the three-week period. Most of the respondents identified key issues on SR 202 within Fall City related to parking, safety, pedestrian connectivity/safety, and the Preston/Fall City Road Southeast intersection in Fall City. The survey takers also submitted 306 individual comments. The majority of the individual comments related to the key issues and many also expressed concerns about the Preston/Fall City Road Southeast intersection. A detailed summary of the SR 202 Corridor Studies survey results is provided in Appendix \#2.

3.2.4 Fall City Community Association meetings

The Fall City Community Association was identified early on as a stakeholder because the section of SR 202 that operates within Fall City, from the intersection of 324th Avenue SE to the intersection of SR 202 with SR 203/Tolt Hill Road, serves as a main street for the community.

Fall City, with a population of approximately 5,000 , is a Census-designated place and does not have a formal city government. However, it does have an active community organization in the form of the Fall City Community Association (FCCA). The group_holds online meetings the first Tuesday evening of the month. WSDOT study staff participated in four FCCA meetings to provide study updates (Dec. 1, 2020; Feb. 2, 2021; March 2, 2021; and Jan. 4, 2022). Copies of these FCCA community meeting briefings are provided in the Appendix \#2.

Members of the Fall City Community Association and Fall City Metropolitan Parks District approached WSDOT late in the study process to suggest the consideration of a roundabout concept at the SR 202 / 334th Avenue Southeast/Southeast 42nd Place intersection. WSDOT is supportive of a roundabout on the west end of SR 202 in Fall City, although this will require
further analysis and study. Additional coordination and study with the King County Roads Division will be required to determine the feasibility of a roundabout at this intersection.

3.3 Tribal coordination

Tribal coordination is a key component of engagement at WSDOT. For the SR 202 Corridor Studies, WSDOT staff reached out to five area tribes with an offer to participate in the SR 202 Corridor Studies. These five tribes were: Muckleshoot Indian Tribe; Snoqualmie Indian Tribe; Stillaguamish Tribe of Indians, The Tulalip Tribes and Yakama Nation. None of them responded to the WSDOT invitation letters.

Copies of these invitation letters are included in Appendix B.

3.4 Stakeholder engagement

Early in the study scoping process, the WSDOT sought out key community members and potential study partners who might have an interest in these studies and/or could be affected by issues/needs identified in these studies, The following were identified and contacted to participate in either the formal stakeholder group or to provide consultation or feedback:

- King County Department of Local Services
- King County Metro
- King County Roads
- Fall City Community Association
- Muckleshoot Indian Tribe
- Snoqualmie Indian Tribe
- Stillaguamish Tribe of Indians
- The Tulalip Tribes
- Yakama Nation
- Washington State Patrol
- Area emergency medical service providers (Fall City Fire District

Number 27)

- Fall City community organizations
- Business owners
- Area chambers of commerce
- Bicycle and pedestrian groups
- Snoqualmie Valley School District
- Fall City Metropolitan Park District

4.0 Technical analysis and recommended improvement concepts

4.1 244th Avenue Northeast to 324th Avenue Southeast (Rural)

SR 202 between 244th Avenue Northeast and 324th Avenue Southeast is a rural, two-lane, high-speed (55 mph posted) state highway. The focus of this SR 202 study was safety performance at the key intersections that experienced crashes in the last five year: Ames Lake Road Northeast, Tolt Hill Road, Southeast 8th Street, 264th Avenue Southeast, 308th Avenue Southeast, and 324th Avenue Southeast in Fall City.

Figure 4.1.1 - SR 202 intersections at Ames Lake Road \& Tolt Hill Road (mp 13.83 \& 15.50-60.)

4.1.1 Safety strategies and concept development

Upon the completion of the needs assessment for the Rural Segment, WSDOT proceeded to identify and consider potential improvement concepts that could address identified safety, operational, and multimodal performance gaps. WSDOT is guided by the strategies and recommendations in Target Zero, the state's Strategic Highway Safety Plan. Target Zero's goal is to reduce the number of deaths and serious injuries on Washington's roadways to zero by year 2030.

Almost half of all fatal or serious injury intersection-related crashes in the study area involve an angle crash. This type of crash involves a vehicle being struck in a T-bone style crash, while either turning left in front of oncoming traffic (one-third of fatal or serious injury angle crashes)
or by entering SR 202 from a side street and pulling out in front of oncoming traffic (two-thirds of angle crashes).

One effective countermeasure identified in the Target Zero strategies is a roundabout. During the performance evaluation step, several intersections were identified as potential candidates for roundabouts in lieu of the current intersection configuration. Beyond being a proven countermeasure for reducing intersection-related fatal and serious injury crashes overall, roundabouts are especially effective at reducing angle crashes. They create a low-speed environment and channel vehicles, which almost entirely eliminates angle crashes as drivers cannot "run" a roundabout like they do a red light or a stop sign. In addition, there are no leftturn movements at a roundabout. There are already more than 400 roundabouts at intersections throughout Washington.

Another intersection safety countermeasure identified in Target Zero is to improve intersection visibility which was clearly identified as a need for several of the major intersections. Improved intersection visibility starts with roadway lighting and markings. However, many of the nighttime intersection crashes occur at lighted intersections. Additional visibility amendments and driver recognition of vehicles moving through an intersection is also needed, especially to help combat distracted driving. These include upgraded signing, targeted lighting, and delineation such as reflective markings on signals and on signposts.

WSDOT reviewed the crash history of intersections between Northeast 244th Street and 324th Avenue Southeast in Fall City and applied these Target Zero strategies to key intersections. There were several key intersections on SR 202 west of Fall City, including Southeast 8th Street, Southeast 40th Street and 324th Avenue Southeast that were not considered for full roundabout treatment because they lack a documented crash history. However, these intersections should be further analyzed with updated crash data to determine if a roundabout treatment would be the appropriate future improvement strategy.

4.1.2 Corridor assessment

WSDOT assessed multimodal, safety and environmental performance between 244th Avenue Northeast and 324th Avenue Southeast based on scoping and partner engagement. The key intersections Northeast Ames Lake Road (milepost 13.83) and Northeast Tolt Hill Road (milepost 15.50 - 15.60), both of which have a history of crashes in the five-year safety analysis. The
entire corridor was evaluated for safety performance gaps which highlighted the additional intersections noted in the following.

Northeast Ames Lake Road Intersection (Milepost 13.83)

Figure 4.1.2 - Northeast Ames Lake Road Intersection overview

The intersection of SR 202 at Northeast Ames Lake Road is a T-intersection within the 55 MPH speed zone. The eastbound direction of SR 202 has a left turn lane for drivers turning onto Northeast Ames Lake Road. There is east-west commuting traffic between Fall City and Redmond during the peak periods. Turning traffic to and from Northeast Ames Lake Road can experience delays waiting for gaps during the peak commute hours.

In the five-year crash history from 2015 to 2019 there were 11 total crashes recorded at this intersection. Two crashes in the vicinity of the intersection resulted in fatalities, but neither was related to intersection turning movement. Six of the collisions were recorded angle crashes, four
of which resulted in injuries. In There were also two rear-end, one animal-related, one "T-bone" and one same direction-miscellaneous crash.

A single-lane roundabout was identified as the recommended improvement strategy at this intersection for both the safety performance benefits and to maintain operational capacity for the SR 202 mainline. Any bicycle and pedestrian facilities required to meet Washington state legislation in RCW 47.24 requiring "complete streets" features will be identified during the Complete Streets project design process.

Northeast Tolt Hill Road Intersection (Milepost 15.50-15.60)

Figure 4.1.3 - Northeast Tolt Hill Road intersection overview

The intersection of SR 202 with Northeast Tolt Hill Road is within the 55 MPH speed zone and has two connections with separate legs as it terminates at SR 202. The unique configuration is due to a hill and elevated terrain profiles on the north side of SR 202.

The eastern connection handles traffic heading to and from the east and has recorded five crashes involving southbound Northeast Tolt Hill Road traffic making a left turn versus westbound SR 202 traffic continuing straight.

The western connection handles the majority of the traffic heading to and from the west. No dedicated turn lanes are present, so eastbound traffic turning left must stop in lane to yield to westbound traffic. The absence of a turn lane results in some delay during peak conditions. There were two recorded rear-end crashes involving eastbound traffic at the western connection. Field observations noted numerous skid marks in the eastbound lane approaching the western connection as well. There have been eight recorded rear-end crashes on southbound Northeast Tolt Hill Road at or approaching the connection with westbound SR 202. In total, there were 26 crashes in the Northeast Tolt Hill Road intersection vicinity. Eleven were rear-end, seven angle, and two "T-bone" crashes, accounting for 20 of the 26 crashes. Also recorded were four fixed object, one pedal cycle, and one same direction-miscellaneous crash. There have been 12 recorded injury crashes, but no fatal crashes in the five-year crash history, 2015 to 2019.

Similar to the Northeast Ames Lake Road intersection, a single-lane roundabout was identified as the recommended strategy for the safety performance benefits and for maintaining operational capacity for mainline SR 202.

Any bicycle and pedestrian facilities required to meet Washington state legislation in RCW 47.24 requiring "complete streets" features will be identified during the Complete Streets project design process.

To enhance the intersection in the near-term, a centerline striping treatment and additional signing will be implemented. The treatment will also augment driver awareness approaching the intersection.

264th Avenue Northeast (Milepost 14.45)

The intersection of 264th Avenue Northeast is a high-angle, skewed-intersection connection to SR 202 within the rural 55 MPH zone. The intersection serves a handful of residences, and the safety analysis did not yield a crash history; however, the current configuration warrants further investigation to address community concerns

Southeast 8th Street (Milepost 17.21)

Southeast 8th Street is a T-intersection within the rural 55 MPH zone that is stop controlled and serves residential, school bus and recreational vehicle traffic. The intersection has nine recorded crashes, including five injury crashes. The crashes consist of four rear-end, two fixed object, one angle crash, one same-direction miscellaneous, and one sideswipe.

To enhance the intersection in the near-term, a centerline striping treatment and additional signing will be implemented. The treatment will augment driver awareness approaching the intersection. WSDOT will continue to monitor this intersection after the treatment is applied.

Southeast 31st Street (Milepost 19.06)

The intersection of Southeast 31st Street with SR 202 is a skewed T-intersection connection with stop control on Southeast 31st Street. The intersection serves a handful of residences and is an alternate connector to 308th Avenue Southeast. The current skewed configuration warrants further investigation to address identified community concerns.

308th Avenue Southeast (Milepost 19.45)

The 308th Avenue Southeast intersection is a four-leg intersection within the rural 55 MPH zone. The north and south legs of this intersection are stop controlled. The northwest quadrant hosts baseball fields and parking along the north side of SR 202 that is separated from traffic by shoulder and concrete curbing. WSDOT installed Flashing Beacon Warning signs at this intersection in early 2021 to improve intersection safety.

There have been 10 recorded crashes at the intersection, five of which resulted in an injury. There were three angle, three fixed object, two same direction-miscellaneous, one opposite direction, and one rear-end crash.

To enhance the safe operation of this intersection in the near-term, a centerline striping treatment and additional signing will be implemented. The treatment will augment driver awareness approaching the intersection. WSDOT will continue to monitor this intersection after the treatment is applied.

4.1.3 Planning-level cost estimates

WSDOT developed planning-level cost estimates for the recommendations. This is a preliminary estimate of costs based on minimal or no design; a summary level of quantities and materials and minimal environmental retrofit or repair needed for each given strategy/concept.

Summarized below are the planning-level cost-estimates for proposed improvements on SR 202 west of Fall City in unincorporated King County:

- NE Ames Lake Road: $\$ 7.3$ million.
- NE Tolt Hill Rd: \$9.7 million.
- Centerline treatment with signing and striping will be implemented as lower-cost treatments.

Specific details regarding the planning-level cost-estimates can be found in Appendix One of this final report.

4.2 Fall City

SR 202 enters Fall City from the west as the speed limit transitions from 55 MPH to 45 MPH just west of Southeast 40th Street. Community feedback indicated concerns about the intersection of 324th Avenue SE which is located within the 45 MPH transition zone. This intersection is adjacent to current residential development activity. Chief Kanim Middle School is also situated within the area. WSDOT's assessments indicated a need to better facilitate turning movements to and from the school and to reduce the school zone speed limit to 30 MPH at the beginning and end of the school day.

Just west of 332nd Avenue Southeast, the speed limit changes to 30 MPH as the character of the roadway changes to a more residential area with homes and businesses. Fall City Elementary School is near to the 334th Avenue SE and 42nd Place SE intersections and this intersection is currently configured with two separate approach legs that provide a 'wye'-connection to SR 202. Reducing crash potential was the focus in the business district, as WSDOT assessed pedestrian crossing/connectivity, safe vehicle operations, parking issues, and the role of SR 202 as the "main street." The Snoqualmie River, and parks on the north side of SR 202 are attractions for summertime visitors and river recreators and were highlighted by the community as areas that need to be assessed.

Figure 4.2.1 - Overview of SR 202 in Fall City

Another specific location of concern within Fall City is the intersection of SR 202 and PrestonFall City Road Southeast immediately south of the SR 202 crossing of the Snoqualmie River. It is currently a ' T ' intersection, with Preston-Fall City Road terminating at the intersection. WSDOT heard the public believes this intersection has a number of operational and design challenges and highlighted it as a key area of concern.

Figure 4.2.2. SR 202 - Preston-Fall City Road I/S in Fall City

In 2016, WSDOT developed a preliminary design for a full roundabout at this intersection to compliment the roundabout at SR 203 on the north side of the Snoqualmie River. However, this area is constrained by businesses on the east and west side making a roundabout infeasible due to extensive cost and right of way impacts. Numerous public comments from the community survey highlighted concerns about the present function and operation of this intersection and there were several responses in support of a roundabout here. As described in section 4.2.4, a compact roundabout was identified as the most promising improvement concept to address the needs at Preston - Fall City Road.

4.2.1 Western Segment of Fall City between 324th Avenue SE and 332nd Place SE

One of the future landmark features in this segment is the planning for the West Side Trail. The planning work for the West Side Trail began well over 20 years with an established
advisory group identified concerns related to safe pedestrian and bicycle access along the increasingly congested SR 202.

This community-led effort evolved to the point where the Fall City Metropolitan Park District (FCMPD) is now proposing the development of a separated shared-use path along the south side of SR 202 in Fall City. The shared-use path would start at the southwest quadrant of the 42nd Street Southeast/334th Avenue SE intersection and would continue west along the south side of SR 202 for approximately one mile to 324th Avenue Southeast/Southeast River Road.

The shared-use path and associated intersection improvements will reduce the level of traffic stress and will increase community connectivity, mobility, and accessibility. Separated pedestrian and bicycle access in the SR 202 corridor will link neighborhoods with important community destinations such as schools, parks, the library, shopping and restaurants in Fall City, and other places. Further information on the West Side Trail project can be found on the project website. The following graphic, from the West Side Trail Improvement Project Final Report, shows the scope and geographic limits of the West Side Trail in Fall City.

Figure 4.2.3. Westside Trail in Fall City (https://www.fallcityparks.org/west-side-trail.html)

At the west end of the segment, WSDOT is continuing to investigate additional intersection strategies for the 324th Avenue Southeast intersection. The community is anticipating an increase in active transportation as a result of the improvements, and the addition of several new housing developments nearby.

Since 324th Avenue Southeast serves as a gateway to Fall City and is near to Chief Kanim Middle School, WSDOT will lead future investigations into strategies to evolve the driving environment by assisting with driver movement to and from the school, encourage lower operating speeds and support future trail users.

4.2.2 332nd Place SE to Preston-Fall City Road and the Fall City Business District

The SR 202 corridor transitions to a main street in the vicinity of 334th Place Southeast and Southeast 42nd Place. The vicinity features business driveways along the north side of the highway and hosts the Fall City Elementary School and Fall City Library along the south side. Continuing east on SR 202, the north side transitions to parks and landscape features along the Snoqualmie River waterfront. The south side has businesses, restaurants, and markets with front-in angle parking for visitors and patrons.

The segment of SR 202 within downtown Fall City has additional considerations such as angled parking, intensive community and commercial land-use, and greater frequency of access points to SR 202. Due to the extra intricacies of this segment, additional concepts were developed and evaluated. A screening process with input from stakeholders was utilized to identify a preferred alternative for this segment.

WSDOT conducted an initial brainstorming effort among project staff whereby various concepts were identified, considered, and applied to these key categories
(safety/operations/multimodal/active transportation access/environmental) for mid-term implementation in the business area.

The concepts considered during the initial evaluation and development process were specifically tied to key study objectives of safety, operations, multimodal access, and environmental. None of the concepts identified during this process were specifically focused on capacity improvements as these are longer term improvement concepts beyond the scope of this study. Recommended concepts proceeded into a two-stage (Level I/II) screening process.

The concepts identified and developed are summarized below in Table 4.2.1.

\#	Business Parking	River Parking	\# of Parking spots	Lane Width (ft)	Median	Riverfront Sidewalk (ft)	Business front sidewalk	Bike facility
1	Back-in	Parallel	High	10.5	Rolled curb	14-foot shareduse path	7	Shareduse path
2	Angled	N/A	Medium	10.5	N/A	11-foot sidewalk	6	N/A
3	Parallel	Parallel	Low	11	8-foot planter	6-foot sidewalk	6	5-foot bike lane
4	Parallel	Parallel	Low	11	3-foot median	13-foot shared- use path	7	5-foot bike lane
5	Back-in	Parallel	High	10.5	Stripe	10-foot sidewalk	10	N/A
6	Parallel	Parallel	Low	10.5	3-foot median	8-foot sidewalk	8	Protected bike lanes along river
7	Angled	N/A	Low	12	Stripe	8-foot sidewalk	6	N/A
8	Parallel	Parallel	Low	11	Stripe	6-foot sidewalk	7	Buffered bike lanes

Table 4.2.1 - Improvement Concepts analyzed for SR 202 in Fall City
For the section of SR 202 west of the business district, the focus was on lower-cost, near-term strategies related to intersection visibility and speed management. The western gateway of Fall City is a transitional speed zone where the speed limit changes from 55 to 45 to 30 MPH. The Chief Kanim Middle School, a residential neighborhood and a future Westside Trail and housing developments are in the 45 MPH speed segment of SR 202.

4.2.3 Performance screening metrics

WSDOT developed a set of performance metrics for a detailed screening of near and mid-term improvement concepts. As a result of that initial consideration and assessment, a draft set of evaluation criteria was developed and applied as follows:

- Safety (consistency with Target Zero)
- Accessibility (pedestrian connectivity, access to transit)
- Constructability (cost, technical feasibility, etc.)
- Community Support (including preserving community character)

The screening process was structured in two levels, with a levell screening process being a qualitative process where project staff considered near and mid-term potential improvement concepts in terms of how they might address needs and/or deficiencies in qualitative terms, without the benefit of any detailed performance analysis or data.

A level II screening process was subsequently developed and applied to the remaining improvement concepts to be screened in a more detailed and quantitative manner. As part of this level II screening process, evaluation and performance screening criteria were developed for the key (above) categories and a basic scoring range (1-5) was established for each performance metric. Where available, data was collected and applied for each improvement concept. In some cases, qualitative judgement was applied in absence of available data.

4.2.4 Intersection-Level Assessment

324th Avenue Southeast

Figure 4.2.4 - SR 202 Intersection with 324th Avenue Southeast

The intersection of 324th Avenue Southeast is within the 45 MPH speed transition zone from rural King County into Fall City. The north and south legs of this intersection are stop controlled. The study survey and stakeholder engagement highlighted this intersection as a regular route for cyclists across SR 202. In addition, residential development is ongoing south of the intersection. The intersection serves as the western terminus of the West Side Trail.

Two non-injury crashes were reported at the intersection: one involving an animal and one a rear-end collision. The intersection warrants additional investigation due to the active transportation use and the gateway characteristic of the intersection.

Figure 4.2.5 - SR 202 Intersection with 334th Place Southeast/Southeast 42nd Street in Fall City

The intersection of 334th Place Southeast and Southeast 42nd Street consists of two separate Y-connections with 334th Place Southeast connecting to the north and Southeast 42nd Street connecting to the south. Both are within a 30-mph speed zone, between these two approach streets is a landscaped area with a totem pole. There was one recorded angle crash in the vicinity of the two intersections; however, it was related to traffic exiting the driveway on the north side of SR 202.

334th Place Southeast connects to SR 202 at a low angle; in other words, eastbound SR 202 traffic turning to 334th Place Southeast can maintain a higher speed compared to a more traditional right-angle intersection. The Metropolitan Park District's future West Side Trail project will be a separated shared path constructed parallel to SR 202. This community-
supported trail will facilitate the movement of active transportation users, bringing more pedestrians and bikes to the library and other attractions around these intersections. The angle of the 334th Place Southeast and the complexity of the intersection adjacent to the library increase the level of stress for active transportation users.

To manage speed and reduce the level of traffic stress for active transportations users, reconfiguration into a single T-intersection is recommended. A right-angle connection with SR 202 will reduce the speed of turning traffic and simplify the pedestrian crossing between the future trail and the library.

334th Place Southeast and Southeast 42nd Place are King County streets and a primary access to Fall City Elementary School. As the concept moves forward, the recommended strategy will need to be closely coordinated with both partners.

Late in the study process, a roundabout concept was proposed by community members at 334th Place Southeast and SE 42nd Street. A roundabout could serve as a western compliment to the recommended roundabout at the Preston-Fall City Road intersection and facilitate westbound U-turns to eastbound parking in the downtown core. This concept can and should be explored further outside of this study. Coordination and consultation with the King Roads Division will also be required as part of this process.

Preston-Fall City Road

Figure 4.2.6-SR 202 Intersection with Preston-Fall City Road in Fall City

Preston-Fall City Road is a T-intersection within a 30 MPH speed zone. This intersection is the focal point within Fall City, experiencing traffic demand between Redmond, Carnation, Snoqualmie, Fall City, and I-90/Preston. As a result, peak periods can experience heavy congestion with delays to traffic on Preston-Fall City Road, which is controlled with a stop sign. Weekends during the summer can also experience heavy traffic conditions with the tourists coming to the area to access the Snoqualmie River and downtown businesses.

There have been 16 recorded crashes at the Preston-Fall City Road intersection, of which five were injury-related crashes. The predominant crash types involved turning vehicles with six angle crashes and three "T-bone" crashes. In addition, there were three fixed object, one rearend, one parking related, one pedestrian, and one sideswipe crash.

A compact roundabout was identified as the recommended strategy for Preston-Fall City Rd. It would serve as a compliment to the existing roundabout at the intersection of SR 202 and SR 203. A roundabout will also reduce queues and delay on Preston-Fall City Rd. Roundabouts are a strategy for speed reduction, which is an emphasis for the multimodal environment and active transportation use at this intersection. The roundabout also enables the introduction of marked pedestrian crossings at the intersection, which will facilitate the movement of pedestrians between recreational and downtown attractions. The specific bicycle and pedestrian facilities required to meet Washington state legislation in RCW 47.24 requiring "complete streets" features will be identified during the Complete Streets project design process.

4.2.5 Planning-level cost estimates

A key action in finalizing the improvement concepts was to develop planning-level cost estimates for these projects. Development of these planning-level cost-estimates was an iterative process. The planning level cost estimates were developed using WSDOT's Planning-Level-Cost Estimation Tool (PLCE) and represent a preliminary estimate of costs based on minimal or no design and a summary level of quantities, materials, and minimal environmental retrofit or repair needed for a given strategy/concept. The cost estimates for the Fall City improvement strategies are as follows:

- Roundabout at Preston-Fall City Road and central Fall City improvements (separated Pedestrian/Bike lane on the north side, parking/striping/geometry improvements, etc.): \$10.4M.
- 324th Avenue Southeast intersection: signing and striping will be implemented as lowercost treatments.

4.2.6 Final concept screening

After developing planning-level cost estimates for the improvement concepts in Fall City, the strategies went through a final screening to confirm consistency with key study objectives (safety, non-motorized access, multimodal connectivity, and relative environmental impact).

A basic one-through-five scoring rubric was developed to quantitatively assess each improvement concept based upon these key screening criteria, where a score of "one" would be a "negative" (makes the condition/need worse), two would be "poor," three "neutral," four
equates to some (positive) improvements, and a score of five would greatly improve and achieve criteria objectives.

Other factors that were considered in the concept screening for downtown concepts included the following:

- Parking.
- Bike facilities.
- Pedestrian facilities.

The final concept-screening concluded with a shared-use path along the river for both pedestrians and cyclists, while maintaining the maximum number of parking spaces with parallel parking on the river side and back-in angle parking adjacent to the businesses.

Figure 4.2.7 below shows the recommended concepts for the SR 202 corridor in Fall City and to the west of Fall City.

Figure 4.2.7 - SR 202 Recommended Improvement Concepts in Fall City and west of Fall City

5.0 Recommendations and implementation

5.1 Concept packages

The recommended concepts reflect the limited and targeted focus of this study, namely consideration and evaluation of near and mid-term ($0-12$ years) recommendations. As noted below, none of the recommended improvement concepts have any funding secured for implementation.

Also, as the cost estimates for the recommended concepts are at a 'planning-level' of analysis (no design) and are in current-year (2020) dollars, the cost-estimates will need to be revised and updated as these recommended concepts proceed into design and project implementation. It is quite likely that some, if not all of these cost estimates could increase during further project design and implementation.

5.2 Implementation costs and timeframe

WSDOT will consider strategies identified when making determinations on capital improvements within its project development processes. WSDOT may also be directed to fund strategies or portions of strategies in this plan by the Washington State Legislature. As funding becomes available to further develop the strategies, WSDOT will initiate formal environmental review. WSDOT has maintained the majority of this section of SR 202 in fair or better condition; and the study recommendations assume that WSDOT and its partners will continue to maintain and preserve the transportation system in a state of good repair so that roadway operations and capacity will be maintained.

Although phasing of the recommended improvement concepts was not identified as part of these improvement concepts, subsequent implementation might consider phasing of options, given the cost and complexity of the various recommended improvements. For example, the reconfiguration of the intersection of SR 202 with SE 42nd Street and Southeast 334th Place will require ongoing coordination with King County (Library/Metro Transit Stop/Fire District \#27) and the Snoqualmie Valley School District (Fall City Elementary School), and the cost and design of this concept will likely entail further revisions.

The central Fall City improvement on SR 202 (Preston-Fall City Road intersection compact roundabout and the north side pedestrian and bicycle lane) will also involve ongoing community and partner coordination, and the design and cost estimate will evolve as this coordination proceeds into implementation. Phasing of this concept into several components will likely be necessary to match available funding and agency/staff capacity to oversee and insure implementation.

5.3 Responsibilities and next steps

WSDOT will work with local stakeholders to incorporate study findings and recommendations into local/regional plans where appropriate. The next update to local and regional plans presents an opportunity to incorporate this study's recommendations.

Additional funding is needed for design and construction of the recommended strategies, and those funding opportunities will need to be pursued in 2022 and in years beyond. The near-term, immediate funding needs are to complete design for key study strategies such as the compact roundabout improvement at the Preston - Fall City Road intersection in Fall City, the separated pedestrian-bike lane on the north side of SR 202 in Fall City, and the Southeast 42nd Street/334th Place intersection improvements in Fall City. The recommendations for roundabouts at Northeast Ames Lake Road and the Northeast Tolt Hill Road are also important priorities going forward and could be considered in WSDOT's priority programming, However it is important to note the proposed roundabouts at these two intersections, as well as the proposed compact roundabout at Preston-Fall City Road in Fall City will require the completion of an Intersection Control Evaluation (ICE) study during project design. Likewise, a future roundabout at the South 334th / Southeast $42^{\text {nd }}$ Place intersection with SR 202 will also need to conduct an ICE analysis during the project design phase.
An ICE analysis is recommended Federal Highway Administration (FHWA) guidance when major changes to intersection design or operation are proposed and are addressed in WSDOT policy guidance and direction in our Design Manual.
Grant funding for design, project development and construction will likely be a multi-year process. There are several potential regional, state, and federal funding sources that should be considered when considering implementation of the recommended concepts from this study.

Transportation Systems Management and Operations (TSMO)

WSDOT and local stakeholders should continue to consider and pursue appropriate near-term Transportation System Management and Operations (TSMO) strategies to address immediate performance gaps and safety needs at key intersections in the SR 202 study area. These TSMO strategies should focus on striping, channelization, additional illumination, other TSMO components as appropriate. The effort to seek funding the roundabout concepts at Northeast Ames Lake Road and Northeast Tolt Hill Road will be a multi-year process. Therefore, in the
interim, appropriate immediate TSMO strategies, if applicable, should be considered for these intersections.

TSMO strategies such as striping, channelization improvements, and illumination should also be considered and pursued as appropriate for the intersections of SR 202 and 264th Avenue Southeast, SR 202 and Southeast 8th Street, and SR 202 at 324th Avenue Southeast/West River Road.

Grant funding opportunities to be considered for concept recommendations from this study are as follows:

Puget Sound Regional Council

The Puget Sound Regional Council (PSRC) as the Metropolitan Planning Organization (MPO) and Regional Transportation Planning Organization (RTPO) for the four-county central Puget Sound Region is responsible for distributing federal funds through several different grant funding programs. The PSRC has multiple funding cycles for different programs, including the federal FHWA and FTA programs.

- The Transportation Alternatives Program (TAP).
- The Rural Town Centers and Corridors (RTCC) program.
- The Special Needs Transportation program.

These grant programs operate on different two-year cycles. Several of these grant programs have concluded their 2022 call-for-projects, but these grant programs could be potential candidates for future SR 202 corridor project applications. The next opportunity to seek further PSRC funding for SR 202 corridor strategies recommended in this report will be Spring 2024.

Washington State Department of Transportation

WSDOT, though its Active Transportation Division (ATD), manages the distribution of state funds for two nonmotorized focused programs, the Pedestrian -Bicycle Program (PBP) and the Safe Routes-School (SRTS) program. These programs are focused on improving pedestrian and bicycle safety on transportation facilities and making biking and walking to school safer and more appealing. These two programs currently have calls out to develop a list of eligible projects for legislative consideration and funding in the 2023-2025 biennium. As applications are due for
these two programs in June of 2022, it will not be possible to seek and obtain funding in the current cycle of these two programs this biennium.

Federal funding

Rebuilding American Infrastructure with Sustainability and Equity (RAISE) Grant: RAISE is a discretionary grant program that provides funding for projects with significant local or regional impacts. Both planning projects and capital projects are eligible for funding. Per the most recent Notice of Funding Opportunity (2022), USDOT prioritizes projects that reduce greenhouse gas emissions, address environmental justice, proactively address racial equity and barriers to opportunity, and supports the creation of good-paying job. RAISE projects require a 20 percent non-federal match unless the project is located in a rural area, or an area identified by USDOT as an Area of Persistent Poverty or Historically Disadvantaged Community. USDOT solicits applications annually, with the application deadline typically in April and awards typically announced in August.

Appendix A:

SR 202 Corridor Safety Evaluation, Design Evaluation Summary (Street-Mix), and Concepts Cost-Estimates

SR 202 Corridor Study

From $244^{\text {th }}$ Ave NE Intersection to SR 203 Roundabout |MP 13.00-21.84

September 2020
WSDOT NWR - Traffic Safety Management

Table of Contents

Background 1
Abbreviations 1
Safety Study (HAL/HAC/CAL/CAC/ISIP/FA) History 2
Crash Analysis 2
Run-Off-the-Road (ROTR) Crashes 6
Opposite Direction (OD) Crashes 9
Non-Motorized Road User Crashes 12
NE Ames Lake Rd I/S (MP 13.83) 13
NE Tolt Hill Rd I/S (MP 15.50-15.60) 15
SE $8^{\text {th }}$ St I/S (MP 17.21) 19
308th Ave SE I/S (MP 19.45) 21
Preston-Fall City Rd SE I/S (MP 21.71) 23
SR 202 and SR 203 I/S (Roundabout) MP 21.84 27
List of Tables
Table 1. Safety Study History (01/01/2010 - 08/25/2020) 2
Table 2. SR 202 MP 13.00-21.84 Crash Severities by Year. 2
Table 3. SR 202 MP 13.00-21.84 Crash Types by Year 3
Table 4. SR 202 MP 13.00-21.84 ROTR Crashes by Severity and Year. 6
Table 5. SR 202 MP 13.00-21.84 OD Crashes by Severity and Year 9
Table 6. SR 202 and NE Ames Lake Rd I/S Crash Severities by Year 13
Table 7. SR 202 and NE Ames Lake Rd I/S Crash Types by Year 13
Table 8. SR 202 and NE Tolt Hill Rd I/S Crash Severities by Year 15
Table 9. SR 202 and NE Tolt Hill Rd I/S Crash Types by Year 15
Table 10. SR 202 and NE Tolt Hill Rd I/S Crash Types by the Related Junction (01/01/2015-12/31/2019 16
Table 11. SR 202 and SE 8 ${ }^{\text {th }}$ St I/S Crash Severities by Year 19
Table 12. SR 202 and SE 8 ${ }^{\text {th }}$ St I/S Crash Types by Year 19
Table 15. SR 202 and $308^{\text {th }}$ Ave SE I/S Crash Severities by Year 21
Table 16. SR 202 and $308^{\text {th }}$ Ave SE I/S Crash Types by Year 21
Table 17. SR 202 and Preston-Fall City Rd SE I/S Crash Severities by Year 23
Table 18. SR 202 and Preston-Fall City Rd SE I/S Crash Types by Year 23
Table 19. SR 202 and SR 203 RA Crash Severities by Year. 27
Table 20. SR 202 and SR 203 RA Crash Types by Year 27

List of Figures

Figure 1. SR 202 MP 13.00-21.84 Crash Heat Map (01/01/2015-12/31/2019) 5
Figure 2. SR 202 MP 13.00-21.84 ROTR Crashes by Month (01/01/2015-12/31/2019) 6
Figure 3. SR 202 MP 13.00-21.84 ROTR Crashes by Day of Week (01/01/2015-12/31/2019) 6
Figure 4. SR 202 MP 13.00-21.84 ROTR Crashes Heat Map (01/01/2015-12/31/2019) 8
Figure 5. SR 202 MP 13.00-21.84 OD Crashes by Month (01/01/2015-12/31/2019) 9
Figure 6. SR 202 MP 13.00-21.84 OD Crashes by Day of Week (01/01/2015-12/31/2019) 9
Figure 7. SR 202 MP 13.00-21.84 OD Crashes by Time of Day (01/01/2015-12/31/2019) 10
Figure 8. SR 202 MP 13.00-21.84 OD Crashes Heat Map (01/01/2015-12/31/2019) 11
Figure 9. SR 202 and NE Ames Lake Rd I/S 13
Figure 10. SR 202 and NE Tolt Hill Rd I/S 15
Figure 11. SR 202 and NE Tolt Hill Rd I/S Crashes by Month 16
Figure 12. SR 202 and NE Tolt Hill Rd I/S Crashes by Day of Week 16
Figure 13. SR 202 and NE Tolt Hill Rd I/S Crashes by Time of Day 17
Figure 14. SR 202 and NE Tolt Hill Rd I/S Crash Diagram (01/01/2015-06/10/2020) 18
Figure 15. SR 202 and SE $8^{\text {th }}$ St I/S 19
Figure 17. SR 202 and $308^{\text {th }}$ Ave SE I/S 21
Figure 18. SR 202 and Preston-Fall City Rd SE I/S 23
Figure 19. SR 202 and Preston-Fall City Rd SE I/S Crashes by Month 24
Figure 20. SR 202 and Preston-Fall City Rd SE I/S Crashes by Day of Week 24
Figure 21. SR 202 and Preston-Fall City Rd SE I/S Crashes by Time of Day 24
Figure 22. SR 202 and Preston-Fall City Rd SE I/S Crash Diagram (01/01/2015-06/10/2020) 26
Figure 23. SR 202 and SR 203 Roundabout. 27
Figure 24. SR 202 and SR 203 RA Crash Diagram (01/01/2015-06/10/2020) 29

Background

SR 202 is a rural high-speed roadway that travels East - West in King County. SR 202 between $244^{\text {th }}$ Ave NE and SR 203 has been identified for a high level assessment of multimodal, access, safety and environmental needs.

Between $244^{\text {th }}$ Ave NE and $324^{\text {th }}$ Ave SE, intersections along the corridor such as Ames Lake Road and NE Tolt Hill Road have been highlighted with a history of injury crashes. East of the $324^{\text {th }}$ Ave SE intersection has SR 202 passing through Fall City before crossing Snoqualmie River and continuing East. This area is popular with visitors going tubing the river and visiting restaurants and cafes in Fall City. The north side of SR 202 lacks separated pedestrian facilities; a jersey barrier is present on the west side of the bridge heading North over the Snoqualmie River, transitioning to an at-grade pedestrian path indicated by pavement markings.

This study reviews the crashes occurring on SR 202 between $244^{\text {th }}$ Ave NE intersection and SR 203 roundabout (MP 13.00-21.84).

Abbreviations

A list of abbreviations used throughout the report are

AC = entering at angle crash	PDO = property damage only/no apparent
injury	
CC = contributing circumstances	$\mathrm{PI}=$ possible injury
DNG R/W = did not grant right-of-way	$\mathrm{RA}=$ roundabout
EB = eastbound	RE = rear-end crash
EI = evident injury/suspected minor injury	TOTR = run-off-the-road
FO = fixed object	RT = right
I/S = intersection	SD - misc. = same dir. - misc.
LT = left	SB = southbound
MC = motorcycle	SI = serious injury/suspected serious injury
MP = milepost	SG = sign
NB = northbound	UB = utility box
OD = opposite direction	UP = utility pole
ODLT = opposite direction 1 LT-1 STR	WB = westbound
Ped: pedestrian	

Safety Study (HAL/HAC/CAL/CAC/ISIP/FA) History

Table 1 below shows all locations that have been reviewed as part of our safety program (HSIP) within the study corridor since 01/01/2010 to present.

Table 1. Safety Study History (01/01/2010 - 08/25/2020)

Year	Type	Description	Begin MP	End MP
2010	IAL	Tolt Hill Rd	15.48	15.58
2010	IAL	$292^{\text {nd }}$ AVE	18.25	18.25
2012	CAL	NE Ames Lake Rd to $264^{\text {th }}$ Ave SE - R36	13.83	14.45
2012	IAL	Preston-Fall City Rd	21.70	21.70
2014	CAL	$1 / 3$ Mi E of Tolt Hill Rd to $1 / 3$ Mi E of SE $8^{\text {th }}$ St (R40)	16.04	17.53
2014	CAL	Preston-Fall City Rd S I/S Vic (R2)	21.71	21.74
2015	ISIP	SR 202/SE 8 $8^{\text {th }}$ St.	17.21	17.21
2015	ISIP	SR202/308 ${ }^{\text {th }}$ Ave NE	19.45	19.45
$2015-2016$	FA	SR 202 MP 0.00-14.00	0.00	14.00
2016	IAL	$308^{\text {th }}$ Ave SE	19.45	19.48
$2016-2017$	FA	SR 202 MP 25.00-30.60	25.00	30.60
$2017-2018$	FA	SR 202 MP 14.00-25.00	14.00	25.00
2018	IAL	Tolt Hill Rd	15.40	15.70

Crash Analysis

From 2015-2019, there were 226 total crashes that 38% of them were injury crashes. There were an additional 11 crashes in 2020.

Table 2. SR 202 MP 13.00-21.84 Crash Severities by Year

Crash Severity	Year					Total		$\mathbf{2 0 2 0}$
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.	Percentage	
Fatal				1	2	3	1%	
Suspected Serious Injury	$\mathbf{2}$	1				3	1%	
Suspected Minor Injury	7	4	6	1	3	21	9%	3
Possible Injury	14	10	10	10	15	59	26%	3
No Apparent Injury	26	28	21	30	30	135	60%	5
Unknown		1	2	1	1	5	2%	
Total	$\mathbf{4 9}$	$\mathbf{4 4}$	$\mathbf{3 9}$	$\mathbf{4 3}$	$\mathbf{5 1}$	$\mathbf{2 2 6}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 1}$

[^0]Table 3. SR 202 MP 13.00-21.84 Crash Types by Year

Crash Type	Year					Total		$\mathbf{2 0 2 0}$
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.	Percentage	
Animal	3	2	2	2	2	11	5%	
Entering at angle	10	5	6	8	7	36	16%	1
Fixed object	12	17	12	9	21	71	31%	1
Opp Dir 1LT-1STR	7	1	2	2	1	13	6%	3
Opposite direction	2	2	3	3	2	12	5%	
Overturn	1	2		2		5	2%	1
Parking				2	1	3	1%	
Pedalcycle	1	1				2	1%	
Pedestrian	1					1	$<1 \%$	
Rear-end	8	10	10	10	16	54	$\mathbf{2 4 \%}$	4
Same Dir-Misc	1	1	2	5	1	10	4%	1
Sideswipe	3	3	2			8	4%	
Total	$\mathbf{4 9}$	$\mathbf{4 4}$	$\mathbf{3 9}$	$\mathbf{4 3}$	$\mathbf{5 1}$	$\mathbf{2 2 6}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 1}$

Fatal and serious injury (SI) crash descriptions are as follows:

Fatal Crashes:

1- MP 13.74 (07/16/2019-Tuesday - @ 04:47) OD - V1 was traveling WB in the EB lane and struck traveling EB V2 head-on. This crash occurred on wet surface and in dark- no street lights condition. CC- Other
2- MP 14.02 (06/25/2019 - Tuesday - @ 04:27) AC - V1 making Left-Turn (LT) from a driveway to SR 202 WB got struck by traveling EB V2. This crash occurred on dry surface and in dark- no street lights condition. CC- Improper Action
3- MP 17.61 (09/05/2018 - Wednesday - @ 11:39) OD - V1 was traveling EB on SR 202 WB crossed over the centerline into the path of V2 that was traveling WB and in opposite direction. V1 collided with V2 despite of the driver of V2's attempt to avoid the collision, then V1 struck the EB guardrail and caught fire. This crash occurred on dry surface and in daylight condition. CCOther

SI Crashes:

1- MP 15.40 (02/01/2015 - Sunday - @ 12:30) Bike - Bicyclist and V1 were driving EB and V1 was behind the bicyclist. As V1 approached the bicyclist, failed to leave appropriate space for the bicyclist and the left mirror of V1 struck the bicyclist. This collision occurred on dry surface and in daylight condition. CC- Inattention
2- MP 19.99 (06/20/2016 - Monday - @ 17:45) FO - V1 was traveling WB; the driver swerved into the EB lane, then steered back into the WB lane. While trying to turn back into the correct lane, the driver overcorrected, lost control, crossed back across the EB lane, and collided with the ditch on south shoulder of EB SR 202. This crash occurred on dry surface and in daylight condition. CC- DUI
3- MP 21.71 (08/05/2015 - Wednesday - @ 18:57) Ped - V1 traveling NB on Preston-Fall City Rd in Left-Turn Lane (LTL) struck a pedestrian crossing the busy roadway at an unmarked location.

[^1]Pedestrian was described as being blind and was using a white cane. The collision occurred on dry surface and in daylight condition. CC- None

Figure 1. SR 202 MP 13.00-21.84 Crash Heat Map (01/01/2015-12/31/2019)

UNDER 23 U.S. CODE $\S 148$ AND 23 U.S. CODE $\S 409$, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION MENTIONED OR ADDRESSED IN SUCH REPORTS, SURVEYS, SCHEDUUES, USTS, OR DATA.

Run-Off-the-Road (ROTR) Crashes

There were 76 ROTR (including fixed object (FO) and overturn (OT)) crashes on the study corridor from 01/01/2015 to 12/31/2019.

Table 4. SR 202 MP 13.00-21.84 ROTR Crashes by Severity and Year

Crash Severity	Year					Total		$\mathbf{2 0 2 0}$
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.	Percentage	
Suspected Serious Injury		1				1	1%	
Suspected Minor Injury	2	1	2	1	1	7	9%	
Possible Injury	2	1	2	2	2	9	12%	1
No Apparent Injury	9	15	6	7	17	54	71%	1
Unknown		1	2	1	1	5	$\mathbf{7 \%}$	
Total	$\mathbf{1 3}$	$\mathbf{1 9}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{2 1}$	$\mathbf{7 6}$	$\mathbf{1 0 0 \%}$	$\mathbf{2}$

Figure 2. SR 202 MP 13.00-21.84 ROTR Crashes by Month (01/01/2015-12/31/2019)

Figure 3. SR 202 MP 13.00-21.84 ROTR Crashes by Day of Week (01/01/2015-12/31/2019)

[^2]Other ROTR crash characteristics are as follows:

- 41 (54\%) in either dark, dawn, or dusk
- 29 (38\%) on either wet or icy surface
- 17 (22\%) were intersection related crashes
- Contributing cause (CC): 14 ea. DUI and inattention, 13 speed, 6 driver distraction, 4 sleep/fatigue, 2 defective equip., and 1 ea. improper action \& illness/meds
- 6 (8\%) entering the mainline (SR 202) from the side streets
- 29 (38\%) b/w 2 PM and 7 PM

Figure 4. SR 202 MP 13.00-21.84 ROTR Crashes Heat Map (01/01/2015-12/31/2019)

Opposite Direction (OD) Crashes

During last five years, from 01/01/2015 to 12/31/2019, 12 OD crashes occurred on SR 202 within the study corridor.

Table 5. SR 202 MP 13.00-21.84 OD Crashes by Severity and Year

Crash Severity		Year				Total	
		$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.	Percentage
Fatal				1	1	2	17%
Possible Injury		1	1	2	1	5	42%
No Apparent Injury	2	1	2			5	42%
Total	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1 2}$	$\mathbf{1 0 0 \%}$

Figure 5. SR 202 MP 13.00-21.84 OD Crashes by Month (01/01/2015-12/31/2019)

Figure 6. SR 202 MP 13.00-21.84 OD Crashes by Day of Week (01/01/2015-12/31/2019)

[^3]
Crashes by Time of Day

Figure 7. SR 202 MP 13.00-21.84 OD Crashes by Time of Day (01/01/2015-12/31/2019)
Other ROTR crash characteristics are as follows:

- $3(25 \%)$ in either dark or dusk
- $8(67 \%)$ on either wet or icy surface
- Contributing cause: 4 speed, 2 inattention, 1 driver distraction, and 1 DUI

Figure 8. SR 202 MP 13.00-21.84 OD Crashes Heat Map (01/01/2015-12/31/2019)

Non-Motorized Road User Crashes

A 5-year crash data, from 01/01/2015 to $12 / 31 / 2019$, shows that along the entire corridor, from $244^{\text {th }}$ Ave NE @ MP 13.00 to the end of the study corridor @ MP 21.84, 1 pedestrian crash and 2 bike crashes occurred on the study corridor. These Ped and Bike crashes are described below:

Bike Crashes

1- SI @ MP 15.40 (02/01/2015 - Sunday - @ 12:30) Bike - Bicyclist and V1 were driving EB and V1 was behind the bicyclist. As V1 approached the bicyclist, failed to leave appropriate space for the bicyclist and the left mirror of V1 struck the bicyclist. This collision occurred on dry surface and in daylight condition. CC- Inattention
2- PI @ MP 21.68 (08/05/2015 - Wednesday - @ 14:17) Bike - Bicyclist was traveling WB on SR 202 in lane 1. An unknown vehicle left the north shoulder and crossed the WB lanes causing the bike to swerve and the rider to be ejected. This collision occurred on dry surface and in daylight condition. CC- Blank

Pedestrian Crashes

1- SI @ MP 21.71 (08/05/2015 - Wednesday - @ 18:57) Ped - V1 traveling NB on Preston-Fall City Rd in Left-Turn Lane (LTL) struck a pedestrian crossing the busy roadway at an unmarked location. Pedestrian was described as being blind and was using a white cane. The collision occurred on dry surface and in daylight condition. CC- None

NE Ames Lake Rd I/S (MP 13.83)

Figure 9. SR 202 and NE Ames Lake Rd I/S

Table 6. SR 202 and NE Ames Lake Rd I/S Crash Severities by Year

Crash Severity	Year				Total			$\mathbf{2 0 2 0}$
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.	Percentage	
Suspected Minor Injury	1		1			2	18%	1
Possible Injury	1			1	1	3	27%	
No Apparent Injury	1		1	2	2	6	55%	
Total	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1 1}$	$\mathbf{1 0 0 \%}$	$\mathbf{1}$

Table 7. SR 202 and NE Ames Lake Rd I/S Crash Types by Year

Crash Type	Year				Total		$\mathbf{2 0 2 0}$	
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.		
Entering at angle	2			2	2	6	55%	
Rear-end			1		1	2	18%	1
Animal	1					1	9%	
Opp Dir 1LT-1STR				1		1	9%	
Same Dir-Misc			1			1	9%	
Total	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1 1}$	$\mathbf{1 0 0 \%}$	$\mathbf{4}$

[^4]Other crash characteristics are as follows:

- $4(36 \%)$ in dark
- 4 (36\%) on wet surface
- CC: 3 inattention, 2 improper action, 2 DNG R/W, 2 speed, and 1 driver distraction
- 3 in October, 2 in March, and 1 ea. in Jan., May, July, Aug., Sept., Nov., and Dec.
- 4 on Wed., 3 on Mon., 2 ea. on Tues. and Thur., and 1 on Sun.
- All b/w 7 AM and 10 PM
o $2 \mathrm{~b} / \mathrm{w} 7 \mathrm{AM}$ and $8 \mathrm{AM}, 4 \mathrm{~b} / \mathrm{w} 9 \mathrm{AM}$ and $1 \mathrm{PM}, 4 \mathrm{~b} / \mathrm{w} 4 \mathrm{PM}$ and 6 PM , and $2 \mathrm{~b} / \mathrm{w} 8 \mathrm{PM}$ and 10 PM
- 6 AC
$0 \quad 1 \mathrm{El}$ and 3 PI
o 2 in dark
o 2 on wet surface
o CC: 2 inattention, 1 DNG R/W, and 1 improper action
o V1 vs V2 Dir.:
- 1 Entering from the right from a driveway to SR 202 WB (making LT) vs EB
- 4 Entering from NE Ames Lake Rd to SR 202 EB (making LT) vs WB
- 1 Entering from NE Ames Lake Rd to SR 202 WB (making RT) vs WB

0 All b/w 7 AM and 6 PM

- 3 b/w 4 PM and 6 PM

NE Tolt Hill Rd I/S (MP 15.50-15.60)

Figure 10. SR 202 and NE Tolt Hill Rd I/S

Table 8. SR 202 and NE Tolt Hill Rd I/S Crash Severities by Year

Crash Severity	Year				Total		
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.	Percentage
Suspected Serious Injury	1					1	4%
Suspected Minor Injury	1	2				3	12%
Possible Injury	3	3	1		1	8	31%
No Apparent Injury	2	4	1	4	2	13	50%
Unknown					1	1	4%
Total	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{2 6}$	$\mathbf{1 0 0 \%}$

Table 9. SR 202 and NE Tolt Hill Rd I/S Crash Types by Year

Crash Type	Year					Total	
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.	Percentage
Rear-end	1	5	1	3	1	11	42%
Entering at angle	2	3	1		1	7	27%
Fixed object	1			1	2	4	15%
Opp Dir 1LT-1STR	2					2	8%
Pedalcycle	1					1	4%
Same-Dir-Misc		1				1	4%
Total	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{2 6}$	$\mathbf{1 0 0 \%}$

[^5]Table 10. SR 202 and NE Tolt Hill Rd I/S Crash Types by the Related Junction (01/01/2015-12/31/2019)

Crash Type	Tolt Hill Rd Wye (MP 15.50)	Tolt Hill Rd I/S (MP 15.60)	Total
Entering at angle	1^{*}	6	7
Fixed object	1	3	4
Opp Dir 1LT-1STR	2	0	2
Same Dir-Misc	$1^{* *}$	0	1
Pedalcycle	1	0	1
Rear-end $\quad 10$	1	10	
Total	$\mathbf{1 6}$	$\mathbf{1 0}$	$\mathbf{2 6}$

* From PTCR narrative and the crash diagram this crash seems to be a RE crash (02/28/2015)
** From PTCR narrative and crash diagram the crash seems to be a RE crash (08/31/2016)

Figure 11. SR 202 and NE Tolt Hill Rd I/S Crashes by Month

Figure 12. SR 202 and NE Tolt Hill Rd I/S Crashes by Day of Week

[^6] MENTIONED OR ADDRESSED IN SUCH REPORTS, SURVEYS, SCHEDULES, LISTS, OR DATA.

Figure 13. SR 202 and NE Tolt Hill Rd I/S Crashes by Time of Day
Other crash characteristics are as follows:

- $6(23 \%)$ in either dark or dusk
- 10 (38\%) on either wet or icy surface
- CC: 8 inattention, 7 following, 2 speed, 1 DNG R/W, 1 improper action, 1 illness/meds, 1 sleep/fatigue, and 1 disregard control
- $\quad 11$ RE

02 El and 2 PI
o 1 in dark
o 5 on wet surface
o CC: 6 following, 4 inattention, and 1 speed
o V1\&V2 Dir

- 1 EB @ MP 15.48
- 6 entering for the left (from Tolt Hill Rd to SR 202 WB) \& 2 EB @ MP 15.50-15.52
- 1 EB @ MP 15.59, and
- 1 entering for the left (from Tolt Hill Rd to SR 202 EB) @ MP 15.60
o All b/w 8 AM and 5 PM
- 4 b/w 3 PM and 4 PM
- 7 AC

01 El and 3 PI
o 3 in either dark or dusk
o 2 on wet surface
o CC: 3 inattention, 1 DNG R/W, 1 improper action, 1 following, and 1 disregard control
o V1 vs V2 Dir.:

- 1 @ MP 15.50 both vehicles Entering from NE Tolt Hill Rd to SR 202 WB (making RT)
- 2 @ MP 15.59 Entering from NE Tolt Hill Rd to SR 202 EB (making LT) vs WB
- 2 @ MP 15.60 Entering from NE Tolt Hill Rd to SR 202 EB (making LT) vs WB
- 1 @ MP 15.60 Entering from NE Tolt Hill Rd to SR 202 WB (making RT) vs WB
- 1@ MP 15.65 Entering from a driveway to SR 202 EB (making LT) vs WB

O 2 b/w 2 PM and 3 PM, and 4 b/w 5 PM and 8 PM

Under 23 U.S. Code $\S 148$ and 23 U.S. Code $\S 409$, safety data, reports, surveys, schedules, lists compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential crash sites, hazardous roadway conditions, or railway-highway crossings are not subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.

Figure 14. SR 202 and NE Tolt Hill Rd I/S Crash Diagram (01/01/2015-06/10/2020)

SE $\mathbf{8}^{\text {th }} \mathbf{S t}$ I/S (MP 17.21)

Figure 15. SR 202 and SE $8^{\text {th }}$ St I/S
Table 11. SR 202 and SE 8th St I/S Crash Severities by Year

Crash Severity	Year				Total		
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.	Percentage
Suspected Minor Injury			1			1	11%
Possible Injury	1		1	1	1	4	44%
No Apparent Injury		2	1	1		4	44%
Total	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{9}$	$\mathbf{1 0 0 \%}$

Table 12. SR 202 and SE 8th St I/S Crash Types by Year

Crash Type	Year				Total		
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.	Percentage
Rear-end	1		1	1	1	4	44%
Fixed object		1	1			2	22%
Entering at angle			1			1	11%
Same-Dir-Misc				1		1	11%
Sideswipe		1				1	11%
Total	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{9}$	$\mathbf{1 0 0 \%}$

Other crash characteristics are as follows:

- 1 (11\%) in dark
- 3 (33\%) on wet surface
- CC: 4 speed, 2 inattention, 7 following, 1 improper action, and 1 driver distraction
- 2 ea. in Jan. \& Dec., and 1 ea. in June, July, Aug., Oct., and Nov.
- 5 on Wed., and 1 ea. on Mon., Tues., Thur., and Fri.
- 4 b/w 7 AM and 10 AM, 3 b/w 2 PM and 4 PM, and 2 b/w 5 PM and 6 PM

[^7]- 4 RE

0 All PI
o 1 in dark
o CC:3 speed, and 1 driver distraction
o V1 \& V2 Dir.

- All EB
- $\quad 2 \mathrm{FO}$
o 1 on wet surface
0 CC: 1 speed
o 1 @ 14:02 and 1 @ 14:38
o Veh Dir.
- 1 turning LT to SR 202 EB, and 1 SR 202 WB (due to a turning LT vehicle from SE $8^{\text {th }}$ St to SR 202 EB)
- 1 SD-misc. : EB V1 collided with the turning LT V2 from EB to SE $8^{\text {th }} \mathrm{St}$. V1 wanted to pass V2 on the left side. The crash occurred on wet surface.
- 1 SS: EB V1 collided with turning LT V2 from EB to SE $8^{\text {th }}$ St and the right side guardrail. V2 attempted to pass V 2 on the right side.
- 1 AC: This crash was an El crash. V1 turning LT to SR 202 EB from SE $8^{\text {th }}$ St collided with WB V2 on wet surface.

308th Ave SE I/S (MP 19.45)

Figure 16. SR 202 and $308^{\text {th }}$ Ave SE I/S
An Active Warning Sign (AWS) was installed in 2017. It is for the WB SR 202 and warns drivers about entering vehicles from $308^{\text {th }}$ Ave SE.

Table 13. SR 202 and $308^{\text {th }}$ Ave SE I/S Crash Severities by Year

Crash Severity	Year				Total		$\mathbf{2 0 2 0}$	
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.		
Suspected Minor Injury	2	1				3	30%	
Possible Injury	1				1	2	20%	1
No Apparent Injury	2			2	1	5	50%	
Total	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1 0}$	$\mathbf{1 0 0 \%}$	$\mathbf{1}$

Table 14. SR 202 and $308^{\text {th }}$ Ave SE I/S Crash Types by Year

Crash Type	Year					Total		$\mathbf{2 0 2 0}$
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.	Percentage	
Entering at angle	2	1				3	30%	
Fixed object	1			1	1	3	30%	
Same Dir-Misc	1			1		2	20%	1
Opposite direction	1					1	10%	
Rear-end \quad Total					1	1	10%	
$\mathbf{5}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1 0}$	$\mathbf{1 0 0 \%}$	$\mathbf{4}$	

[^8]Other crash characteristics are as follows:

- 7 (70\%) in dark
- $4(40 \%)$ on either wet or icy surface
- CC: 4 ea. inattention \& DUI, and 1 ea. speed \& disregard control
- 3 in Nov., 2 ea. in Jan. \& Dec., and 1 ea. in July, Aug., and Sept.
- 5 on Fri., 3 on Tues., and 2 on Thur.
- $2 \mathrm{~b} / \mathrm{w} 11 \mathrm{AM}$ and 12 PM, and $4 \mathrm{~b} / \mathrm{w} 4$ PM and 7 PM
- 3 AC
o All before 2017 (installing AWS)
o 2 El and 1 PI
o 1 in dark
o 2 on wet surface
o CC: 2 inattention, and 1 disregard control
o $2 \mathrm{~b} / \mathrm{w} 11 \mathrm{AM}$ and 12 PM, and 1 @ 8:59 PM
o V1 vs V2 Dir.:
- 2 SB ($308^{\text {th }}$ Av SE thru) vs EB
- 1 EB (lost control) vs Stopped at the Stop sign on the south leg
- 3 FO
o 1 in dark
o All on wet surface
o CC: 2 DUI, and 1 speed
o 1 @ 12:26 AM, and 2 b/w 5 PM and 7 PM
o Vehicle Dir.:
- 1 EB (turning RT to $308^{\text {th }}$ Ave SE)
- 1 NB (turning RT to SR 202 EB from $308^{\text {th }}$ Ave SE)
- 1 WB lost control and hit the ditch on the south side
- 2 SD-misc.

01 El
o 1 in dark
o CC: 2 DUI
o V1 and V2 Dir.

- WB V1 collided with the turning LT V2 from WB to $308^{\text {th }}$ Ave SE. V1 wanted to pass V2 on the left side ($7 / 2015$)
- WB V1 rear-ended WB V2 slowing down to turn RT to $308^{\text {th }}$ Ave SE
- 1 RE:

0 PI
o In dark
o On wet surface
o CC: inattention
o V1 \& V2 Dir.

- WB (V2 turning LT)

Preston-Fall City Rd SE I/S (MP 21.71)

Figure 17. SR 202 and Preston-Fall City Rd SE I/S

Table 15. SR 202 and Preston-Fall City Rd SE I/S Crash Severities by Year

Crash Severity	Year				Total		$\mathbf{2 0 2 0}$	
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.		
Suspected Serious Injury	1					1	6%	
Suspected Minor Injury			1			1	6%	2
Possible Injury		1	1	1		3	19%	
No Apparent Injury	3	1	3	3	1	11	69%	2
Total	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1 6}$	$\mathbf{1 0 0 \%}$	$\mathbf{4}$

Table 16. SR 202 and Preston-Fall City Rd SE I/S Crash Types by Year

Crash Type	Year				Total		$\mathbf{2 0 2 0}$	
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.		
Entering at angle	2		1	$\mathbf{3}$		6	38%	
Opp Dir 1LT-1STR	1		2			3	19%	3
Fixed object		2	1			3	19%	
Rear-end						1	6%	1
Parking				1		1	6%	
Pedestrian	1					1	6%	
Sideswipe			1			1	6%	
Total	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1 6}$	$\mathbf{1 0 0 \%}$	$\mathbf{4}$

[^9]

Figure 18. SR 202 and Preston-Fall City Rd SE I/S Crashes by Month

Figure 19. SR 202 and Preston-Fall City Rd SE I/S Crashes by Day of Week

Figure 20. SR 202 and Preston-Fall City Rd SE I/S Crashes by Time of Day
Other crash characteristics are as follows:

- $2(1 \%)$ in dark
- $4(25 \%)$ on wet surface
- CC: 4 DNG R/W, 3 improper action, 3 inattention, 2 DUI, 1 illness/meds, and 1 disregard control
- 6 AC

01 PI
o 1 in dark
o 1 on wet surface
o CC: 3 DNG R/W, 1 inattention, 1 DUI, and 1 disregard control
o V1 vs V2 Dir.:

- 5 Entering SR 202 from Preston-Fall City Rd SE (turning LT) vs EB
- 1 Entering SR 202 from Preston-Fall City Rd SE (turning RT) vs EB

Under 23 U.S. Code $\S 148$ and 23 U.S. Code $\S 409$, safety data, reports, surveys, schedules, lists compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential crash sites, hazardous roadway conditions, or railway-highway crossings are not subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.

Figure 21. SR 202 and Preston-Fall City Rd SE I/S Crash Diagram (01/01/2015-06/10/2020)

SR 202 and SR 203 Roundabout (MP 21.84)

Figure 22. SR 202 and SR 203 Roundabout
Table 17. SR 202 and SR 203 RA Crash Severities by Year

Crash Severity	Year				Total		2020	
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.		
Suspected Minor Injury			1		1	2	18%	
Possible Injury					1	1	9%	1
No Apparent Injury		1		5	2	8	73%	
Total	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{1 1}$	$\mathbf{1 0 0 \%}$	$\mathbf{1}$

Table 18. SR 202 and SR 203 RA Crash Types by Year

Crash Type	Year				Total			$\mathbf{2 0 2 0}$
	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	Num.	Percentage	
Entering at angle		1	1	2	2	6	55%	
Rear-end				1	1	2	18%	
Fixed object					1	1	9%	1
Same Dir-Misc				1		1	9%	
Overturn \quad Total			1		1	9%		
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{1 0}$	$\mathbf{1 0 0 \%}$	$\mathbf{1}$

Other crash characteristics are as follows:

- $4(36 \%)$ in either dark or dawn
- $3(27 \%)$ on wet surface
- CC: 4 inattention, 2 DNG R/W, and 1 ea. speed, improper action, and defective equip.
- 3 in July, 2 ea. Mar., Apr., June, and 1 in Feb. \& Dec.
- 3 ea. on Wed. \& Fri., 2 on Sat., and 1 ea. on Sun., Mon. \& Tues.

[^10]- 2 b/w 6 AM and 8AM, 2 b/w 9 AM and 11 AM, 3 b/w 2 PM and 4 PM, and 3 b/w 8 PM and 11

PM

- 6 AC
o 1 El and 1 PI
o 3 in either dark or dawn
o 1 on wet surface
o CC: 2 ea. inattention \& DNG R/W
o $2 \mathrm{~b} / \mathrm{w} 6 \mathrm{AM}$ and 8 AM , and $2 \mathrm{~b} / \mathrm{w} 8$ PM and 10 PM

Under 23 U.S. Code § 148 and 23 U.S. Code § 409, safety data, reports, surveys, schedules, lists compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential crash sites, hazardous roadway conditions, or railway-highway crossings are not subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any

Figure 23. SR 202 and SR 203 RA Crash Diagram (01/01/2015-06/10/2020)

Appendix B: Operational Evaluation

Operations Evaluation Summary Table

AM Peak Hour		Existing			Proposed		
Intersection	Intersection Control	Existing LOS	Existing Delay (sec)	Intersection Control	Proposed LOS	Proposed Delay (sec)	
Ames Lake Rd	Two-Way Stop	B	14.1	Roundabout	A	5.9	
NE Tolt Hill Rd (W Jct)*	Two-Way Stop	-	-	Roundabout	-	-	
NE Tolt Hill Rd (E Jct)*	Two-Way Stop	-	-	Roundabout	-	-	
Preston-Fall City Rd*	Two-Way Stop	-	-	-			

PM Peak Hour	Existing			Proposed		
Intersection	Intersection Control	Existing LOS	Existing Delay (sec)	Intersection Control	Proposed LOS	Proposed Delay (sec)
Ames Lake Rd	Two-Way Stop	D	25.9	Roundabout	A	6.7
NE Tolt Hill Rd (W Jct)	Two-Way Stop	B	13.5	Roundabout	A	6.6
NE Tolt Hill Rd (E Jct)	Two-Way Stop	C	18.3		C	
Preston-Fall City Rd	Two-Way Stop	F	94.9	Roundabout	C	26.3

*SR 202 at NE Tolt Hill Rd and SR 202 at Preston-Fall City Rd have limited AM peak period data. Due to the global health crisis in 2020 and 2021, data collection yielded lower volumes than typical. However, the PM peak hour volumes were within typical patterns and can be utilized to inform expected operations at these intersections.

NE Ames Lake Road - AM Peak, Existing

HCM 6th TWSC
3: SR 202 \& NE Ames Lake Rd

Approach	EB	WB	SB
HCM Control Delay, 5	1.8	0	14.1
HCM LOS		B	

NE Ames Lake Road - AM Peak, Proposed

MOVEMENT SUMMARY

(7) Site: 1 [NE Ames Lake Rd - AM (Site Folder: General)]

AM
Site Category: (None)
Roundabout

Vehicle Movement Performance													
$\begin{aligned} & \text { Moy turn } \\ & \text { ib } \end{aligned}$			DEMANIB claNs		$\frac{0 n 9}{8 i n}$	Av/ail Daray	Leval of Servim	92% BAEKBF QUEUE		Prop Cim	$\begin{aligned} & \text { Erachive } \\ & 5 \text { Ren } \\ & \text { Rein } \end{aligned}$	$\substack{\mathrm{N}=1 \\ \mathrm{No} \\ \text { cyelos }}$	$\begin{gathered} \text { fumt } \\ 55 \mathrm{mmo} \\ \mathrm{mpn} \end{gathered}$
East SR 202													
6 T1	368	3.0	400	3.0	0.392	5.3	$\operatorname{LOS} A$	2.4	60.5	0.35	0.49	0.35	35.9
16 R2	28	3.0	30	3.0	0.392	5.2	LOSA	2.4	60.5	0.35	0.49	0.35	35.0
Approach	396	3.0	430	3.0	0.392	5.3	LOS A	2.4	60.5	0.35	0.49	0.35	35.8
North: NE Ames Lake Rd													
$7 \quad 12$	29	3.0	32	3.0	0.223	11.6	LOS B	1.2	29.9	0.55	0.70	0.55	35.0
14 R 2	148	3.0	161	3.0	0.223	6.8	LOSA	1.2	29.9	0.55	0.70	0.55	34.3
Approach	177	3.0	192	3.0	0.223	7.5	LOSA	1.2	29.9	0.55	0.70	0.55	34.4
West: SR 202													
$5 \quad \mathrm{~L} 2$	101	3.0	110	3.0	0.446	9.4	LOS A	3.3	85.0	0.21	0.48	0.21	35.6
2 T1	378	3.0	411	3.0	0.446	4.8	LOS A	3.3	-85,0	0.21	0.48	0.21	35.8
Approach	479	3.0	521	3.0	0.446	5.7	LOS A	3.3	85.0	0.21	0.48	0.21	35.8
All Vahicles	1052	3.0	1143	30	0.446	59	LOSA	3.3	85,0	0.32	0.52	0.32	35.5

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v/c not used).
Roundabout Capacity Model; SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included),
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WASHINGTON STATE OEPARTMENT OF TRANSPORTATION \| Licence: NETWORK/Enterprise \| Processed: Tuesday,
February 8, 2022 1:42:18 PM
Project: J:UCO Trafficl202)SR 202 - MP 13-20,64-21.82. 244th-324th-Fall City Corridor Study 1 SidralSR 202 Roundabouts.sip9

NE Ames Lake Road - PM Peak, Existing

HCM 6th TWSC
3: SR 202 \& NE Ames Lake Rd

| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| Int Delay, siveh | 4.1 | | | | | |

Approach	EB	WB	SB
HCM Control Delay, s	2.3	0	25.9
HCM LOS			D

NE Ames Lake Road - PM Peak, Proposed

MOVEMENT SUMMARY

∇ Site: 1 [NE Ames Lake Rd - PM (Site Folder: General)]
PM
Site Category: (None)
Roundabout

Vehicle Movement Performance													
May Tum IE				$\begin{aligned} & \text { MD } \\ & \text { NS } \\ & \text { irvi } \\ & \text { of } \end{aligned}$	$\begin{aligned} & \text { Dey. } \\ & \text { Saki. } \\ & \text { ynum } \end{aligned}$	Aver. Delay sen	Level of Servige	$\begin{gathered} 95 \% \text { B } \\ \text { out } \\ \text { i veli } \\ \text { ven } \end{gathered}$	$\begin{aligned} & \text { WeH OF } \\ & \text { BUE } \\ & \text { DISL I } \\ & \text { it } \end{aligned}$	Prop. Que	Elicutive Stop Rate	Aver No. Gyales	Aver Speen \qquad moh
East: SR 202													
6 T1	490	3.0	533	3.0	0.610	6.7	LOSA	5.0	128.7	0.63	0.65	0.64	35.0
16 R2	67	3.0	73	3.0	0.610	6.6	LOSA	5.0	128.7	0.63	0.65	0.64	34.2
Approach	557	3.0	605	3.0	0.610	6.7	LOSA	5.0	128.7	0.63	0.65	0.64	34.9
North: NE Ames Lake Rd													
$7 \quad \mathrm{L2}$	36	3.0	39	3.0	0.251	12.5	LOS B	1.4	36.9	0.67	0.78	0.67	34.4
14 R2	133	3.0	145	3.0	0.251	7.7	LOSA	1.4	36.9	0.67	0.78	0.67	33.7
Approach	169	3.0	184	3.0	0.251	8.8	LOS A	1.4	36.9	0.67	0.78	0.67	33.8
West: SR 202													
$5 \quad \mathrm{~L} 2$	194	3.0	211	3.0	0.746	8.8	LOSA	10.6	272.3	0.46	0.48	0.46	34.9
$2 . T 1$	599	3.0	651	3.0	0.746	5.2	LOSA	10.6	272.3	0.46	0.48	0.46	35.1
Approach	793	3.0	862	3.0	0.746	6.3	LOS A	10.6	272,3	0,46	0.48	0.46	35.0
All Vehicles	1519	3.0	1651	3.0	0.746	6.7	LOSA	10.6	272.3	0.55	0.57	0.55	34.8

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Sile LOS Melhod is specified in the Parameter Settings dialog (Site lab).
Roundabout LOS Method: Same as Signalised Intersections,
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
Intersection and Approach LOS values are based on average delay for all movements (v/c not used).
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^11]
NE Tolt Hill Road - PM Peak, Existing

HCM 6th TWSC
7: SR 202 \& NE Tolt Hill Rd (E)

Approach	EB	WB	SB
HCM Control Delay,s	0	0	18.3
HCM LOS		C	

		EBT	WBT WBR SBLIt	
Minor LanelMsjor Mvmt	EBL	EBT		
Capacity (veh/h)	1095	-	321	
HCM Lane V/C Ratio	0.002	-	-	-0.156
HCM Control Delay (s)	8.3	-	-	-18.3
HCM Lane LOS	A	-	-	-
HCM 95th \%tle Q(veh)	0	-	-	-0.5

NE Tolt Hill Road - PM Peak, Proposed

MOVEMENT SUMMARY

8ite: 2 [NE Tolt Hill Rd (Site Folder: General)]
PM
Site Category: (None)
Roundabout

Vehicle Movement Performance													
Mav Tum ID	$\begin{aligned} & \text { INF } \\ & \text { VOL } \\ & \text { ITolal } \\ & \text { vebinh } \end{aligned}$			$\begin{aligned} & \text { Mi } \\ & \text { VS } \\ & \text { HVI } \\ & \text { is } \end{aligned}$	Deg Bam V/es	Aver. Delay sen	Level of Service		$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Disil } \\ & \text { fil } \end{aligned}$	Prop Que	Effective Slop Rate		Aver, Spanat Iminis
East: SR 202													
6 T1	385	3.0	418	3.0	0.476	5.9	LOS A	3.2	81.2	0.50	0.57	0.50	35.5
16a R1	44	3.0	48	3.0	0.476	5.6	LOSA	3.2	81.2	0.50	0.57	0.50	35.3
Approach	429	3.0	466	3.0	0.476	5.9	LOSA	3.2	81.2	0.50	0.57	0.50	35,5
NorthWest: NE Tolt Hill Rd													
7ax L1	42	3.0	46	3.0	0.089	13.0	LOS B	0.4	11.4	0.63	0.76	0.63	32.2
14bx R3	178	3.0	193	3.0	0.212	7.4	LOSA	1.3	33.6	0.62	0.70	0.62	34.1
Approach	220	3.0	239	3.0	0.212	8.5	LOS A	1.3	33.6	0.62	0.71	0.62	33.7
West: SR 202													
5 b L3	164	3.0	178	3.0	0.615	10.9	LOS B	6.1	156.5	0.37	0.51	0.37	35.4
2 Tt	435	3.0	473	3.0	0.615	5.0	LOSA	6.1	156.5	0.37	0.51	0.37	35.2
Approach	599	3.0	651	3.0	0.615	6.6	LOS A	6.1	156.5	0.37	0.51	0.37	35.3
All Vehicles	1248	3.0	1357	30	0.615	6.7	LOS A	6.1	156.5	0.46	0.57	0.46	35.1

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Seltings dialog (Site tab).
Roundabout LOS Method: Same as Signalised Intérsections.
Vehicle movement LOS values are based on average delay and v/C ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v/c not used).
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^12]HCM 6th TWSC
15: Preston Fall City Rd SE \& SR 202

Approach	EB	WB	NB
HCM Control Delay, s	0	4.5	94.9
HCM LOS		F	

Preston-Fall City Road - PM Peak, Proposed

MOVEMENT SUMMARY

(8) Site: 3 [Preston-Fall City Rd (Site Folder: General)]

PM
Site Category: (None)
Roundabout

Vehicle Movement Performance													
Mov Tum ID	INPPUT VOLUMES		DEMAND FLOWS		Deg: Satn v/e	Bunt: Delay sed	Letvel of Service \qquad	95% BACK OF QUEUE		Prup. Que	Eflective Stop Retle	Aver No. Cyeles	Aver. Speed mish
South: Preston-Fall City Rd													
3 L2	149	3.0	162	3.0	0.954	41.3	LOS E	23.4	598.2	1.00	1.53	2.34	23.7
18a R1	430	3.0	467	3.0	0.954	36.4	LOSE	23.4	598.2	1.00	1.53	2.34	23.7
Approach	579	3.0	629	3.0	0.954	37.7	LOS D	23.4	598.2	1.00	1.53	2.34	23.7
NorthEast: SR 202													
1ax L1	253	3.0	275	3.0	0.602	10.1	LOS B	6.1	156.1	0.71	0.65	0.71	33.9
16ax R1	288	3.0	313	3.0	0.602	6.2	LOSA	6.1	156.1	0.71	0.65	0.71	34.2
Approach	541	3.0	588	3.0	0.602	8.0	$\operatorname{LOS} A$	6.1	156.1	0.71	0.65	0.71	34.1
West: SR 202													
5 L L1	464	3.0	504	3.0	0.957	32.1	LOSE	27.4	701.3	1.00	1.26	1.91	25.5
12 R 2	253	3.0	275	3.0	0.957	28.4	LOSE	27.4	701.3	1.00	1.26	1.91	25.3
Approach	717	3.0	779	3.0	0.957	30.8	LOS C	27.4	701.3	1.00	1.26	1.91	25.4
All Vehicles	1837	3.0	1997	3.0	0.957	26.3	LOS C	27.4	701.3	0.91	1.17	169	26.8

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v/c not used).
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WASHINGTON STATE DEPARTMENT OF TRANSPORTATION I Licence: NETWORK / Enterprise / Processed: Tuesday.
February 8, 2022 5:47:33 PM
Project: J:IUCO Trafficl202lSR 202 -MP 13-20.64-21.82 244th-324th-Fall City Corridor StudylSynchro_SidralSR 202 Roundabouts.sip9

ROUNDABOUT ESTIMATE - BREAKDOWN BY UNIT BID ITEM

Subtotal for Percentages

Bid Item Subtotal:	\$3,303,944					\$0	\$3,303,944
Miscellaneous	40.0\%			\$1,321,577		\$0	\$1,321,577
Subtotal:				\$4,625,521		\$0	\$4,625,521
Mobilization	10.0\%			\$462,552		\$0	\$462,552
Subtotal:				\$5,088,073		\$0	\$5,088,073
Sales Tax	10.0\%			\$508,807		\$0	\$508,807
Bid Item Total:				\$5,596,880		\$0	\$5,596,880
Utility Agreements	\$20,000	EA	1	\$20,000	0	\$0	\$20,000
Washington State Patrol	\$100	HR	0	\$0	0	\$0	\$0
(700) Non-Bid Item Total:				\$20,000		\$0	\$20,000

ROUNDABOUT ESTIMATE - BREAKDOWN BY UNIT BID ITEM

ASSUMPTIONS:

1 This project will construct a compact single-lane roundabout (RAB) at SR 202 and NE Ames Lake Rd with an 100' diameter (ICD)
and an 18 ' wide circulating lane. Features include a fully-mountable central island and pre-cast mountable raised splitter islands with pedestrian cut-throughs
2 This project will need approximately 38 working days to complete all work.
3 Adjust Sales Tax to 10% per Washington State Department of Revenue website at the date of this estimate.
4 Construction Engineering adjusted to 13% and contingencies adjusted to 4% per Plans Preparation Manual dated November 2013.
5 Preliminary Engineering adjusted to 13% to match average historical PE cost of previous roundabout projects.
6 Removal of Raised Pavement Markers, Pavement Markings, Plastic Lines, and Paint Lines are incidental to the Planing Bituminous Pavement work. Incidental is defined as "liable to happen as a consequence of."
7 Preliminary review of ROW identified no conflicts - RAB to be constructed within existing roadway footprint.
8 There is a corrected fish barriers within vicinity of project limits \# 07.0383A 0.50.
9 Illumination System, ITS, and Permanent Signing lump sum costs provided by NWR Traffic Design.

PAVING（P1）SCOPING FILE CHECKLIST

Scoped By： \qquad Date：8／20／2019
\qquad Date：8／21／2019
Reviewed By： \qquad Date： \qquad

Project Summary Region Review Package（Required）
\square Project Definition
\square Design Decisions Summary
HQ Review
Environmental Review Summary
Package

Project Vicinity Map
\square Project Cost Estimate Summary
\square
Detailed Quantity Calculations for Each Estimate Item
\square PDIS Schedule
\square PEO Comments

Scoping File Documentation（Required）

\square Roadside Restoration Worksheet

Design Variance Inventory
Support Group Documentation：

Preliminary Surfacing Recommendation
WSPMS Listing
Support Group Correspondence：\square ENVIRONMENTAL \square BRIDGE DESIGN \square MAINTENANCEMATERIALS
$\square R / W$日R／W UPDATETRAFFICUTILITIES口OTHER \qquad
HAC／HAL Reviews
Field Review Notes and Pictures
\square Existing Utility Locations

口
Access Permits

Additional Scoping Information（Optional）

As－Built and Right of Way Plans
Conversation Records and Email Correspondence

Plan Sheets
Resurfacing Project Definition

CALCULATION WORKSHEET - SECTION 1
SR 202/NE Ames Lake Road - MP 13.83

PREPARATION

0050 Removal of Structures and Obstructions
Removal of miscellaneous obstructions

GRADING

0310 Roadway Excavation Incl. Haul, CY

Location	SF	$\begin{gathered} \hline \text { Width (a) } \\ \text { (FT) } \end{gathered}$	$\begin{gathered} \text { Length (b) } \\ \text { (FT) } \end{gathered}$	Depth (FT)	$\begin{aligned} & \text { Vol. } \\ & \text { (CY) } \\ & \hline \end{aligned}$	Measured in PDF
Ames lake Road and SR 202 HMA Removal	51300.00			1.50	2850	
Ames lake Road (New Profile)	8000.00			3.00	889	Measured in PDF
Central Island (NE Quad)	4800.00			1.00	178	Measured in PDF
NE Quad Shoulder	5400.00			2.00	400	Measured in PDF
			Total		4317	CY

431 Gravel Borrow including Haul Incl. Haul, Ton

471 Embankment Compaction, CY

Location	SF	Width (a) (FT)	Length (b) (FT)	Depth (FT)	Vol. (CY)
Same as Gravel Barrow CY					8781

STORM SEWER

3091 Catch Basin Type 1

Notes					EA		

3457 CL IV Reinf. Concrete Storm Sewer Pipe 18"

	300	LF	C5302 had $68 \mathrm{M}=223$ lf increased to 300
SURFACING			

SURFACING

5100 Crushed Surfacing Base Course, TON

Location	Width (a) (FT)	$\begin{aligned} & \text { Length (b) } \\ & \text { (FT) } \end{aligned}$	AREA (SF)	Depth (FT)	Volume (CY)	Tons	Measured in PDF
Ames Lake Road			13000.00	0.35	169	312	
Central Island			3217.00	0.50	60	110	Measured in PDF
N Splitter Island (NE Ames Lake Rd)			1165.00	0.25	11	20	Measured in PDF
W Splitter Island (SR 202)			1720.00	0.25	16	29	Measured in PDF
E Splitter Island (SR 202)			1831.00	0.25	17	31	Measured in PDF
SR 202 West Side Ames Lake Rd			19000.00	0.30	211	391	Measured in PDF
SR 202 East Side Ames Lake Rd			20000.00	0.30	222	411	Measured in PDF
RAB			11309.00	0.30	126	232	Measured in PDF
					Total $=$	1,537	TONS

[^13]CALCULATION WORKSHEET - SECTION 1
SR 202/NE Ames Lake Road - MP 13.83

Ped Cut Through cross section $=4^{\prime \prime}\left(0.33^{\prime}\right)$ Cement Conc. Sidewalk over 0.30^{\prime} CSBC (metric C-8882, traffic island detail)
HOT MIX ASPHALT
$\mathbf{5 7 1 1}$ Planing Bituminous Pavement, SY *Area determined using SRview and Google Maps Alignment Begin MP End MP Width (FT) Length (FT) Area (SF) Area (SY) SR 202 13.75 13.75 36 50 1,800 200 SR 202 13.91 13.75 36 50 1,800 200

5767 HMA for Mainline, Ton

CEMENT CONCRETE PAVEMENT

x Textured and Pigmented Cement Concrete Pavement, SY					64 ICD with 15' apron
Location	$\begin{gathered} \text { Width (a) } \\ \text { (FT) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Length (b) } \\ \text { (FT) } \\ \hline \end{gathered}$	Area (SF)	Area (SY)	
Central Island Apron (15')				256	
Central Island			908	101	34 DIAM
N Splitter Island (NE Ames Lake Rd)			1165	129	Measured in PDF
W Splitter Island (SR 202)			1720	191	Measured in PDF
E Splitter Island (SR 202)			1831	203	Measured in PDF
	Total			881	SY

Central Island cross section $=0.92^{\prime}$ Textured \& Pigmented Cement Concrete Pavement over 0.50' CSBC (metric C-9219)

EROSION CONTROL \& PLANTING												
6403	ESC Lead, Day				31	Days						
6490	Erosion / Water Pollution Control, LS				\$15,000	LS						
6635	High Visibility Silt Fence				LF							
Location				Length (ft)								
NE Ames Lake Rd				350								
SR 202 (north side)				600								
SR 202 (south side)				700								
Total $=$												
				1650								
TRAFFIC												
Roadway Markings/Curb			From SR View \& Google Maps	Quantities								
			6807	6871	6833	9238	6840	6857	6847	6881		
Begin MP	End MP	Notes		Stripes	Plastic Line	Plastic Traffic \qquad	Plastic Traffic Arrows	Plastic Yield Line Symbol	Precast Sloped Mountable Curb	Plastic Crosswalk Line	Plastic Wide Dotted Entry \qquad Line	Plastic Drainage Marker
N Splitter Island (NE Ames Lake Rd) $240{ }^{\prime}$				2,200				250	192			
W Splitter Island (SR 202) 370'				2,200				550	192			
E Splitter Island (SR 202) 425' 20.00				2,200				550	192			
0.00	0.03	North Leg	Edge	317	5	1	6			12		
13.75	13.83	West Leg	Edge	845	5	1	6			12		
13.83	13.91	East Leg	Edge	845	5	1	6			12		
Total Quantity: Units:				8,606	15	3	18	1,926	576	36	0	
				LF	EA	EA	EA	LF	SF	LF	EA	

6699 Roundabout Cement Concrete Curb (4 Inch), LF

Notes	Width (a) (FT)	Length (b) (FT)	Length
West Splitter Island			465
East Splitter Island			445

CALCULATION WORKSHEET - SECTION 1
SR 202/NE Ames Lake Road - MP 13.83

Ames Lk Splitter			280
NW Quad for Shoulder			645
NE Quad for Shoulder			675
South Side SR 202 South			866
LF		3,376	

6708 Roundabout Central Island Cement Concrete Curb, LF

Width (a) (FT)	Length (b) (FT)	Length	
Central Island	3' ICD		
		106	106
LF			

6709 Roundabout Truck Apron Cement Concrete Curb (2 Inch), LF

Notes	Width (a) (FT)	Length (b) (FT)	Length

6904 Illumination System

Cost estimate provided by NWR Traffic Design Duke Do on 9/9/2019.	Total Cost $=$	\$30,000	L.S.
6914 ITS			
Cost estimate provided by NWR Traffic Design Duke Do on 9/9/2019.	Total Cost $=$	\$111,000	L.S.
6890 Permanent Signing			
Cost estimate provided by NWR Traffic Design Duke Do on 9/9/2019.	Total Cost $=$	\$24,000	L.S.

6895 Temporary Pavement Marking - Short Duration

Traffic Control

Work Days		
Preparation and Removal	8	Days
Removing/regrading Ames Lake Rd/SR 202	10	Days
Gravel Borrow/Embankment Compaction	16	Days
CSBC	3	Days
Planing / Repair / Paving	4	Days
Install Traffic Splitter Islands	2	Days
Install Ped Cut Throughs \& DWS	4	Days
Construct Central Island	4	Days
Striping \& Signage Illumination \& ITS Clean-up	4	Days
		4
Days		
	Assume	2

Assumptions for TC

* Production rates based on an 8-hour workday
* Production rates based on an 8-hour workday
* Production rates based on an 8-hour workday /1000tons/day
* Production rates based on an 8-hour workday/1000tons/day
*Grinding @ 9,000 SY / Day; Paving @ 1,200 Tons / Day
*Curbing @ 1,500 LF / Day; Commercial HMA @ 160 CY/day
*1 Ped Cut Through per Day + 1 Day for DWS Install
*CSBC @ 1,000 T / Day; Curbing @ 1,500LF / Day; Concrete Pavement @ 1,200CY / Day
*Striping @ 1,400 LF / Day + 1 Day for Misc. Traffic Markings; All signing in 1 day
* Illumination System @ 5 Days / Pole -- assume work concurrent with Signage \& Ped Cut Throughs

Clean-up

Hrs	Unit Cost	Units	Total Cost
1464	$\$ 7$	HR	$\$ 10,248$
N/A	N/A	LS	$\$ 20,000$
488	$\$ 75$	LS	$\$ 36,600$
1464	$\$ 65$	HR	$\$ 95,160$
N/A	$\$ 25$	SF	$\$ 3,600$
976	$\$ 65$	HR	$\$ 63,440$
1464	$\$ 10$	HR	$\$ 14,640$
N/A	$\$ 18,000$	EA	$\$ 36,000$
976	$\$ 70$	HR	$\$ 68,320$
N/A	$\$ 8,000$	EST	$\$ 8,000$
240	$\$ 120$	HR	$\$ 28,800$

OTHER

7006 Structure Excavation Class B Including Haul, CY
$\begin{array}{lll}\text { Structure } & \text { Excavation Class B } & \text { Including Haul, CY } \\ 18^{\prime \prime} \text { Pipe } & 1.5 \times \mathrm{D}+1.5 & 300 \text { if } 5^{\prime} \text { depth }\end{array}$
3.75
208 CY

7008 Shoring or Extra Excavation Class B, SF

CALCULATION WORKSHEET - SECTION 1

SR 202/NE Ames Lake Road - MP 13.83

Prepared By: \qquad

PIN: A202XXX

| Splitter Islands | 6 | 60 | Three Splitter Islands with ped cut through in each - DWS on each entry point. |
| :--- | :--- | :--- | :--- | :--- |

PAVEMENT REPAIR CALCULATION - SECTION 1
SR: 202 MP: 13.75 to MP: 13.91
Title: SR 202/NE Ames Lake Road Roundabout
WIN: A202XXX
PIN: 1202XXX

PAVEMENT REPAIR CALCULATION

0332 Pavement Repair Excavation Including Haul, SY

Section	Alignment	Area	(SY)
1		0	
	0	This is for 100% of the total Pavement Repair due to the SY measurement	

5739 HMA for Pavement Repair CL 1/2 In PG, TON

Used Bid Item 5739 for a typical pavement repair material.

Section	Alignment	Depth	Area (SY)	Quantity (Tons)	$+5 \%$ (Tons)
90%		0.15	0	0	0
10%		1.00	0	0	0

ROUNDABOUT ESTIMATE - BREAKDOWN BY UNIT BID ITEM

SR:	202
Title:	SR202/Tolt Hill Rd - RAB
WIN:	A202XXX
	Prepared By:
	JC
	Reviewed By:
	Design PE Review By:

BMP:	15.49	$\begin{aligned} & \text { PE } \\ & \text { R/M } \end{aligned}$	@	10.0\%	\$736,000
EMP:	15.68				\$376,000
PIN:	1202XXX	CN	@	13.0\%	\$8,610,000
	Date:			Total	\$9,722,000

12 - Collision Prevention				Section 1 Tolt Hill Rd		Section 2 Vacant		Project Totals			
				Total	Total						
Work Item \#	Work Item	Price per Unit	Unit			Qty	Cost	Qty	Cost	Qty	Cost
Preparation											
0025	Clearing and Grubbing	\$15,000	Acre	0.62	\$9,264	0	\$0	1	\$9,264		
0050	Removal of Structures and Obstructions	\$1	LS	10,000	\$10,000	0	\$0	10,000	\$10,000		
Grading											
0310	Roadway Excavation Incl. Haul	\$35	CY	6,022	\$210,778	0	\$0	6,022	\$210,778		
0431	Gravel Borrow Incl. Haul	\$45	TON	8,254	\$371,412	0	\$0	8,254	\$371,412		
0471	Embankment Compaction	\$10	CY	4,461	\$44,614	0	\$0	4,461	\$44,614		
Storm Sewer											
3091	Catch Basin Type 1	\$2,000	EA	6	\$12,000	0	\$0	6	\$12,000		
3457	CL IV Reinf. Concrete Storm Sewer Pipe 18"	\$70	LF	700	\$49,000	0	\$0	700	\$49,000		
Structures											
4410	SEW 1 Railing 170'	\$110	SF	170	\$18,700	0	\$0	170	\$18,700		
4410	SEW 2 Railing 160'	\$110	SF	160	\$17,600	0	\$0	160	\$17,600		
4410	SEW 3 Railing 300'	\$110	SF	300	\$33,000	0	\$0	300	\$33,000		
7169	SEW 1 MP 15.50 to 15.57 Rt Avg 4' ht 170'	\$65	SF	680	\$44,200	0	\$0	680	\$44,200		
7169	SEW 2 MP 15.55 to 15.61Rt 8' Avg. ht 160'	\$65	SF	1,280	\$83,200	0	\$0	1,280	\$83,200		
7169	SEW 3 MP 15.55 to 15.61Rt 8^{\prime} Avg ht 300'	\$65	SF	1,800	\$117,000	0	\$0	1,800	\$117,000		
4119	SEW 1 Traffic Barrier 170'	\$500	LF	170	\$85,000	0	\$0	170	\$85,000		
4119	SEW 2 Traffic Barrier 160'	\$500	LF	160	\$80,000	0	\$0	160	\$80,000		
4119	SEW 3Traffic Barrier 300'	\$500	LF	300	\$150,000	0	\$0	300	\$150,000		
Surfacing											
5100	Crushed Surfacing Base Course	\$50	T	2,883	\$144,150	0	\$0	2,883	\$144,150		
Hot Mix Asphalt											
5711	Planing Bituminous Pavement	\$10	SY	578	\$5,778	0	\$0	578	\$5,778		
5767	HMA for Mainline	\$140	T	6,784	\$949,716	0	\$0	6,784	\$949,716		
5830	Job Mix Compliance Price Adjustment	Calc	\%	5\%	\$47,485.78	5\%	\$0	Calc	\$47,486		
5835	Compaction Price Adjustment	Calc	\%	5\%	\$47,486	5\%	\$0	Calc	\$47,486		
5875	Commercial HMA	\$350	T	92	\$32,200	0	\$0	92	\$32,200		
Cement Concrete Pavement											
xxxx	Textured and Pigmented Cement Concrete Pavement	\$250	SY	1342	\$335,389	0	\$0	1,342	\$335,389		
Erosion Control \& Planting											
6403	ESC Lead	\$150	Day	39	\$5,850	0	\$0	39	\$5,850		
6471	Inlet Protection	\$150	EA	0	\$0	0	\$0	0	\$0		
6490	Erosion Water Pollution Control	\$1	LS	10000	\$10,000	0	\$0	10,000	\$10,000		
6635	High Visibility Silt Fence	\$8	LF	2700	\$21,600	0	\$0	2,700	\$21,600		
xxxx	Treatment/Detention/mitigation	\$1	LS	500000	\$500,000	0	\$0	500,000	\$500,000		
Traffic											
6807	Plastic Line	\$5	LF	5,344	\$26,718	0	\$0	5,344	\$26,718		
6833	Plastic Traffic Arrows	\$400	EA	5	\$2,000	0	\$0	5	\$2,000		
6847	Wide Dotted Entry Line	\$10	LF	18	\$180	0	\$0	18	\$180		
9238	Plastic Yield Line Symbol	\$120	EA	18	\$2,160	0	\$0	18	\$2,160		
6881	Plastic Drainage Marker	\$100	EA	6	\$600	0	\$0	6	\$600		
6884	Raised Pavent Marking	\$2,000	Hun	0.25	\$502	0	\$0	0.25	\$502		
6895	Temporary Pavement Marking - Short Duration	\$1.00	LF	10,700	\$10,700	0	\$0	10,700	\$10,700		
6699	Roundabout Cement Concrete Curb 4 inch	\$25	LF	1,995	\$49,875	0	\$0	1,995	\$49,875		
6702	Mountable Cement Concrete Traffic Curb	\$80	LF	187	\$14,960	0	\$0	187	\$14,960		
6707	Cement Concrete Pedestrian Curb	\$75	LF	60	\$4,500	0	\$0	60	\$4,500		
6708	Roundabout Central Island Cement Concrete Curb	\$135	LF	125	\$16,875	0	\$0	125	\$16,875		
6709	Roundabout Truck Apron Cement Concrete Curb (2 IN)	\$100	LF	427	\$42,700	0	\$0	427	\$42,700		
6840	Precast Sloped Mountable Curb	\$30	LF	0	\$0	0	\$0	0	\$0		
6904	Illumination System	\$1	LS	50,000	\$50,000	0	\$0	50,000	\$50,000		
6914	ITS	\$1	LS	111,000	\$111,000	0	\$0	111,000	\$111,000		
6890	Permanent Signing	\$1	LS	24,000	\$24,000	0	\$0	24,000	\$24,000		
6956	Sequential Arrow Sign	\$7	HR	1,872	\$13,104	0	\$0	1,872	\$13,104		
6973	Other Temporary Traffic Control	\$1	LS	20,000	\$20,000	0	\$0	20,000	\$20,000		
6974	Traffic Control Supervisor	\$1	LS	46,800	\$46,800	0	\$0	46,800	\$46,800		
6980	Flaggers	\$65	HR	1,872	\$121,680	0	\$0	1,872	\$121,680		
6982	Construction Signing Class A	\$25	SF	144	\$3,600	0	\$0	144	\$3,600		
6992	Other Traffic Control Labor	\$65	HR	1,248	\$81,120	0	\$0	1,248	\$81,120		
6993	Portable Changeable Message Sign	\$10	HR	1,872	\$18,720	0	\$0	1,872	\$18,720		
7447	Transportable Attenuator	\$18,000	EA	2	\$36,000	0	\$0	2	\$36,000		
7449	Operation of Transportable Attenuator	\$70	HR	1,248	\$87,360	0	\$0	1,248	\$87,360		
7450	Repair Transportable Attenuator	\$1	EST	8,000	\$8,000	0	\$0	8,000	\$8,000		
xxxx	Contractor Provided Uniformed Police Officer	\$120	HR	240	\$28,800	0	\$0	240	\$28,800		
Other											
xxxx	ADA Features Survey	1,250	EA	3	\$3,750	0	\$0	3	\$3,750		
7003	Type B Progress Schedule	1	LS	5000	\$5,000	0	\$0	5,000	\$5,000		
7006	Structure Excavation Class B Including Haul	50	CY	681	\$34,028	0		681	\$34,028		
7008	Shoring or Extra Excavation Class B	2	SF	4900	\$9,800	0		4,900	\$9,800		
7038	Roadway Survey	1	LS	10000	\$10,000	0	\$0	10,000	\$10,000		
7054	Detectable Warning Surface	\$50	SF	60	\$3,000	0	\$0	60	\$3,000		
7055	Cement Concrete Sidewalk	\$200	SY	17	\$3,333	0	\$0	17	\$3,333		
7480	Roadside Cleanup	1	EST	5000	\$5,000	0	\$0	5,000	\$5,000		
7725	Reimbursement for Third Party Damage	1	EST	5	\$5	0	\$0	5	\$5		
7736	SPCC Plan	1	LS	1250	\$1,250	0	\$0	1,250	\$1,250		

ROUNDABOUT ESTIMATE - BREAKDOWN BY UNIT BID ITEM

PE	$@$	10.0%	$\$ 736,000$
R/W			$\$ 376,000$
CN	$@$	13.0%	$\$ 8,610,000$
		Total	$\$ 9,722,000$

12-Collision Prevention				Section 1 Tolt Hill Rd		Section 2 Vacant		Project Totals			
				Total	Total						
Work Item \#	Work Item	Price per Unit	Unit			Qty	Cost	Qty	Cost	Qty	Cost

ASSUMPTIONS:

1 This project will construct a compact single-lane roundabout (RAB) at SR 202 and Tolt Hill Rd with a 100' diameter (ICD).
and an 16 ' wide circulating lane. Features include a fully-mountable central island and pre-cast mountable raised splitter islands with pedestrian cut-throughs.
2 This project will need approximately 78 working days to complete all work.
3 Adjust Sales Tax to 10% per Washington State Department of Revenue website at the date of this estimate.
4 Construction Engineering adjusted to 13% and contingencies adjusted to 4% per Plans Preparation Manual dated November 2013.
5 Preliminary Engineering adjusted to 10% to match average historical PE cost of previous roundabout projects.
6 Removal of Raised Pavement Markers, Pavement Markings, Plastic Lines, and Paint Lines are incidental to the Planing Bituminous Pavement work. Incidental is defined as "liable to happen as a consequence of."
7 Preliminary review of ROW identified some conflicts due to - some portions of thre RAB to be constructed outside of thr existing roadway prism.
9 Illumination System, ITS, and Permanent Signing lump sum costs provided by NWR Traffic Design.
10 Used 40% Misc. due to no survey and dificult location due to the steep grade on Tolt Hill Rd.

CALCULATION WORKSHEET - SECTION 1

SR:	202	MP:	15.49	to	MP :	15.68	Prepared By:	Andrea Dabbs
Title:	SR202/Tolt Hill Rd - RAB						Date:	8/20/2019
WIN:	A202XXX							
PIN:	1202XXX							

Assumptions

Circular single-lane RAB with ICD of 100 plus 6' Shoulders.
Central Island cross section $=0.92^{\prime}$ Textured \& Pigmented Cement Concrete Pavement over 0.50' CSBC (metric C-9219) Splitter Island cross section $=0.25^{\prime}$ Commercial HMA over 0.25' CSBC (metric C-8882, traffic island detail)
Ped Cut Through cross section $=4^{\prime \prime}\left(0.33^{\prime}\right)$ Cement Conc. Sidewalk over 0.30' CSBC (metric C-8882, traffic island detail)
Existing SR 202 shoulder where RAB footprint encroaches is full depth pavement per roadway sections on C-5302.

LANE MILE CALCULATION

PREPARATION

25 Clearing and Grubbing, Acre

Location	MP	MP	Width (ft)	Length (ft)	SF	Acres
SR 202 Wye Lt	15.54	15.60	87	324	14094	0.32
SR 202 Rt	15.56	15.65	20	475	4752	0.11
SR 202/Tolt Hill Rd	15.61	15.68	20	370	3696	0.08
Tolt Hill Road Wye	15.49	15.57	10	422	2112	0.05
Tolt Hill Rd Rt			10	300	1500	0.03
Tolt Hill Rd Lt			10	150	750	0.02
				Total $=$		0.00
, assume \# of Ramps	055:					0.62

0050 Removal of Structures and Obstructions

Removal of miscellaneous obstructions	$\$ 10,000$

\section*{0170 Removing Guardrail, LF
 | Type | Begin MP | End MP | Side | Dist (LF) |
| :---: | :---: | :---: | :---: | :---: |
| SR 202/Tolt Hill Rd Wye | | | | 320 |
| Terminals | | | | 76 |
| Transition | | | | |
| LF | | | | |

*Assume 38 LF/terminal; 20 LF/ transition section}

0182 Removing Guardrail Anchor, EA

Same as Beam Guardrail Anchor Type BI 6774: 0 EA

GRADING

0431 Gravel Borrow including Haul Incl. Haul, Ton

Location	SF	Avg. Width (a)	Length (b) (FT)	Depth (FT)	Vol. (CY)	Vol. (Tons)
SR 202 MP 15.49 to 15.68 (New	39072.00	44	888	1.75	2532	4685
RAB Fill at center of RAB/1' Fil at the beg and end.		112	3.50	1277	2363	
RAB 100 ICD plus shldrs.						
Tolt Hill Rd (New Profile)	19000.00	38	500	0.50	352	651
Tolt Hill Rd Wye	16200.00	36	450	0.50	300	555

0471 Embankment Compaction, CY

Location	SF	Width (a) (FT)	Length (b) (FT)	Depth (FT)	Vol. (CY)
Same as Gravel Borrow CY					4461

STORM SEWER

3091 Catch Basin Type 1

Notes					EA
					6

CALCULATION WORKSHEET - SECTION 1

SR:	202	MP:	15.49	to	MP	15.68
Title: SR202/Tolt Hill Rd - RAB						
WIN:	A202XXX					
PIN:	1202XXX					

Prepared By: Andrea Dabbs
Date 8/20/2019

PIN: $\frac{\text { A202XXX }}{1202 X X X}$

HOT MIX ASPHALT

5711 Planing Bituminous Pavement, SY

*Area determined using SRview and Google Maps
Alignment Begin MP End MP Width (FT) Length (FT) Area (SF)Area (SY)
SR 202
SR 202
Tolt Hill Rd

5767 HMA for Mainline, Ton

enchroaches onto existing shoulder -- cross section 0.35' HMA over 0.35' CSBC
5875 Commercial HMA

Location	Area (SF)	Depth (ft)	Volume (CY)	Tons	25' long x 10 ' wide splitter, minus 6 ' wide ped cut through 175' long x 10' wide splitter, minus 6 ' wide ped cut through 175^{\prime} long x 10 ' wide splitter, minus 6 ' wide ped cut through 40' ICD Tons
N Splitter Island (Tolt Hill Rd)	190	0.25	2	4	
W Splitter Island (SR 202)	1690	0.25	16	32	
E Splitter Island (SR 202)	1690	0.25	16	32	
Central Island	1256	0.25	12	24	
Fill splitter islands with commer				92	

Splitter Island cross section $=0.25^{\prime}$ Commercial HMA over 0.25^{\prime} CSBC (metric C-8882, traffic island detail)

CEMENT CONCRETE PAVEMENT

xxxx Textured and Pigmented Cement Concrete Pavement, SY

Location	Width (a) (FT)	$\begin{aligned} & \text { Length (b) } \\ & \text { (FT) } \\ & \hline \end{aligned}$	SF	$\begin{aligned} & \text { Area } \\ & \text { (SY) } \\ & \hline \end{aligned}$	68 ICD with 14^{\prime} apron
SR 202/Wye Island			1125	125	
SR 202 West Island			450	50	
Driveway Island			40	4	
Tolt Wye Island			3325	369	
Tolt Island			375	42	
SR 202 East Island			3860	429	
Central Island Apron (14')			2374	264	
RAB West Island			525	58	
	Total			1342	

[^14]
CALCULATION WORKSHEET - SECTION 1

$\begin{aligned} & \text { SR: } \frac{202}{\text { MP: }} \\ & \text { Title: } \\ & \text { WR202/Tolt Hill Rd }- \text { RAB } \\ & \text { PIN: } \frac{\text { A202 XXX }}{1202 \times X X}\end{aligned}$
$: \frac{\text { A202XXX }}{1202 X X X}$
Prepared By: Andrea Dabbs
Date: \qquad

6403	ESC Lead, Day	39	Days
6490	Erosion / Water Pollution Control, LS	\$15,000	LS

| 6635 High Visibility Silt Fence |
| :---: | :---: | :---: |
| Location Length (ft)
 Tolt Hill Rd 750
 SR 202 (north side) 750
 SR 202 (south side) 1200
 Total $=$
 2700 |\ggg LF

TRAFFIC

Roadway Markings/Curb			From SR View \& Google Maps	Quantities								6884	
			6807	6871	6833	9238	6840	6857	6847	6881			
Begin MP	End MP	Notes		Stripes	Plastic Line	Plastic Traffic Letter	Plastic Traffic Arrows	Plastic Yield Line Symbol	Sloped Mountable Curb	Plastic Crosswalk Line	Plastic Wide Dotted Entry Line	Plastic Drainage Marker	Raised Pavement Marker
15.49	15.55	CL, Edge	4	1,267							2	8	
15.55	15.58	CL, Edge	4	634		2					2		
15.59	15.68	CL, Edge	4	1,901							2	12	
Tolt Hill Wye		Edge		256		2							
Tolt Hill Rd		CL	2	422								5	
Tolt Hill Rd		Edge	2	550									
RAB		Edge	1	314			18			18			
Driveway						1							
Total Quantity: Units:				5,344	0	5	18	0	0	18	6	0.25	
				LF	EA	EA	EA	LF	SF	LF	EA	EA	

6699 Roundabout Cement Concrete Curb 4 inch, LF (For Islands)

Notes		Length			
SR 202/Wye Island		420			
SR 202 West Island		200			
Driveway Island		30			
Tolt Wye Island		520			
Tolt Island		105			
SR 202 East Island	470				
RAB West Island	250				
					1,995

6702 Mountable Cement Concrete Traffic Curb, LF

Notes	Length (b) (FT)	Length
SR 202 West Island	132	132
RAB West Island	55	55
		187

6708 Roundabout Central Island Cement Concrete Curb, LF

6709 Roundabout Truck Apron Cement Concrete Curb (2 Inch), LF

6904 Illumination System

Cost estimate provided by NWR Traffic Design Duke Do on 9/9/2019.
Total Cost $=\$ 50,000 \quad$ L.S.
6914 ITS

Cost estimate provided by NWR Traffic Design Duke Do on 9/9/2019.
Total Cost $=\$ 111,000 \quad$ L.S.

CALCULATION WORKSHEET - SECTION 1

Temporary Pavement Marking - Short Duration

Notes	Begin MP	End MP	Sum of Lines	Number of Applications	LF
Lane Lines			5,344	2	
Item includes removal of temp. markings per Standard Spec. 8-23.5					

Traffic Control

Work Days
Preparation and Removal
Removing/regrading Tolt Hill Rd Walls
Planing / Repair / Paving
Install Traffic Splitter Islands
Install Ped Cut Throughs \& DWS
Construct Central Island
Striping \& Signage
Illumination \& ITS
$\begin{array}{lll} & 4 & \text { Days } \\ \text { Clean-up } & 2\end{array} \begin{gathered}\text { Days } \\ \text { Dassume }\end{gathered}$

Assumptions for TC

* Production rates based on an 8-hour workday
* Production rates based on an 8-hour workday
* Production rates based on an 8-hour workday
*Grinding @ 9,000 SY / Day; Paving @ 1,200 Tons / Day
*Curbing @ 1,500 LF / Day; Commercial HMA @ 160 CY/day
*1 Ped Cut Through per Day + 1 Day for DWS Install
*CSBC @ 1,000 T / Day; Curbing @ 1,500LF / Day; Concrete Pavement @ 1,200CY / Day
*Striping @ 1,400 LF / Day + 1 Day for Misc. Traffic Markings; All signing in 1 day
* Illumination System @ 5 Days / Pole -- assume work concurrent with Signage \& Ped Cut Throughs

		Days	Hrs / Day	Qty	Hrs	Unit Cost	Units	Total Cost
6956	Sequential Arrow Sign	78	8	3	1872	\$7	HR	\$13,104
6973	Other Temporary Traffic Control	N/A	N/A	N/A	N/A	N/A	LS	\$20,000
6974	Traffic Control Supervisor	78	8	1	624	\$75	LS	\$46,800
6980	Flaggers	78	8	3	1872	\$65	HR	\$121,680
6982	Construction Signing Class A	N/A	N/A	144	N/A	\$25	SF	\$3,600
6992	Other Traffic Control Labor	78	8	2	1248	\$65	HR	\$81,120
6993	Portable Changeable Message Sign	78	8	3	1872	\$10	HR	\$18,720
7447	Transportable Attenuator	N/A	N/A	2	N/A	\$18,000	EA	\$36,000
7449	Operation of TA	78	8	2	1248	\$70	HR	\$87,360
7450	Repair TA	N/A	N/A	1	N/A	\$8,000	EST	\$8,000
xxxx	Contractor Provided Uniformed Police Officer	15	8	2	240	\$120	HR	\$28,800

* "Other Temporary Traffic Control" covers traffic drums, cones, contractor piloted vehicle, etc.

OTHER

| 7006 | Structure Excavation Class B Including Haul, CY | |
| :---: | :---: | :---: | :---: |
| | $18^{\prime \prime}$ Pipe | $1.5 \times \mathrm{D}+1.5 \quad 7001 \mathrm{f} 7$ ' depth |

7054 Ramp Detectable Warning Retrofit, SF

*Ramp detectable warning retrofit area assumed at 10 SF per ramp.

Notes	Begin MP	\# of Ramps	Area (SF)
Three Splitter Islands with ped cut through in each - DWS on each entry point.			
Splitter Islands	6	60	Thre

Sidewalk \& Curb/Gutter	6700	6707	7055	
Alignment \quad Begin MP	Conc Curb and Gutter	Conc Pedestrian Curb	Conc Sidewalk	
N Splitter Island (Tolt Hill Rd)		20	6	Ped cut through 5' x $10{ }^{\prime}$
W Splitter Island (SR 202)		20	6	Ped cut through 5' x 10'
E Splitter Island (SR 202)		20	6	Ped cut through 5' x 10'
	0	60	17	
	LF	LF	SY	

ROUNDABOUT ESTIMATE - BREAKDOWN BY UNIT BID ITEM

Contingencies	4.0\%			\$	61,805.12	\$	263,696.00	\$	325,501.12
Public Outreach	\$0	LS	0	\$	-	\$	-	\$	-
Temporary Video Detection System	\$10,000	LS	0	\$	-	\$	-	\$	
(800) State Force Work/Supplied Materials				\$	-	\$	-		
Construction Total:				\$	1,807,799.85	\$	7,713,108.01	\$	9,520,907.86
Preliminary Engineering	10.0\%			\$	154,512.81	\$	659,240.00	\$	813,752.81
Preliminary Engineering Total:				\$	154,512.81	\$	659,240.00	\$	813,752.81
Right of Way									
Easements	Busin	s Access		\$	20,000.00	\$	-	\$	20,000.00
Administration		Parcel	0	\$	-	\$	-	\$	-
Condemnation				\$	-	\$	-	\$	-
Relocation				\$	-	\$	-	\$	-
Right of Way Total:				\$	20,000.00	\$	-	\$	20,000.00
Total Cost of Project:				\$	1,982,312.65	\$	8,372,348.01	\$	10,354,660.67

ASSUMPTIONS:

1 This project will need approximately 123 working days to complete all work
2 Adjust Sales Tax to 8.7% per Washington State Department of Revenue website at the date of this estimate.
3 Construction Engineering adjusted to 13% and contingencies adjusted to 4\% per Ebase User's Guide August 2019
$4 \frac{\text { Preliminary Engineering adjusted to } 10 \% \text { per Cost Estimating Manual for Projects December } 2020 .}{\text { Based on BlueBeam Sketchup }}$
5 Based on BlueBeam Sketchup
6 Highlighted Line on BlueBeam Sketch shows delineation between preserving existing pavement and demoing all pavement
7
8
8
9

PAVING（P1）SCOPING FILE CHECKLIST

Title SR 202／Preston Fall City Rd SE Roundabout，Parking and Sidewalk Improvement

Scoped By：Lucas Rogers
Reviewed By：John Crawford
Reviewed By： \qquad

Date：7／20／2021
Date：TBD
Date： \qquad
Project Summary Region Review Package（Required）
Project Definition
Design Decisions Summary
HQ Review
Environmental Review Summary
Package

Project Vicinity Map
Project Cost Estimate Summary
Detailed Quantity Calculations for Each Estimate Item

PDIS Schedule
PEO Comments

Scoping File Documentation（Required）

Roadside Restoration Worksheet
\square Design Variance Inventory

Support Group Documentation：
Preliminary Surfacing Recommendation
WSPMS Listing
Support Group Correspondence：$\square E N V I R O N M E N T A L \square$ BRIDGE DESIGN $\square M A I N T E N A N C E$
\square MATERIALS
$\square R / W \square R / W$ UPDATE口TRAFFICUTILITIES口OTHER \qquad
HAC／HAL Reviews
Field Review Notes and Pictures
Existing Utility Locations
Access Permits

Additional Scoping Information（Optional）

As－Built and Right of Way Plans
Conversation Records and Email Correspondence
Plan Sheets
Resurfacing Project Definition

CALCULATION WORKSHEET - SECTION 1

SR 18 MP 19.89
Title: $\overline{\text { SR 202/Preston Fall City Rd SE Roundabout, Parking and Sidewalk Im }}$
Prepared By: \qquad WIN: A202XXX
PIN: 1202 XXX

LANE MILE CALCULATION

Alignment	Begin MP	End MP	Type	Length	\# of Lanes	Lane Miles	
SR 202	21.67	21.76	Thru	0.09	2	0.18	
Preston-Fall	0.00	0.04	Thru	0.04	2	0.08	

PREPARATION
 0050 Removal of Structures and Obstructions

Removal of signs and poles
145 Removing Concrete Barrier, LF

Location	MP	MP	SF
SR 202	21.70	21.75	244
			244

Remove existing 100 ' $\times 10$ ' area - to be replaced by splitter island.

150 Removing Traffic Island, SY

Location	MP	Area (SY)
SR 202		42
South Leg		12
		42

0310 Roadway Excavation Incl. Haul, CY						Mountable center island 50'x50' + 3^{\prime} for curb
Location	MP	Width (ft)	Length (ft)	Depth (ft)	Vol. (CY)	
Central Island		53	53	1.00	82	
NW quadrant sidewalk buffer		11	245	1.00	78	CY
SW quadrant sidewalk buffer		6	130	1.00	23	
Total $=18$						

SURFACING

5100 Crushed Surfacing Base Course, TON

Central Island cross section $=0.92^{\prime}$ Textured \& Pigmented Cement Concrete Pavement over 0.50' CSBC (metric C-9219)
Splitter Island cross section $=0.25^{\prime}$ Commercial HMA over 0.25^{\prime} CSBC (metric C-8882, traffic island detail)

HOT MIX ASPHALT

5711
*Area determined using SRview and

*Area determined using SRview and Google Maps						
Alignment	Begin MP	End MP	Width (a) (FT)	Length (b) (FT)	Area (SF)	Area (SY)
SR 202	21.67	21.76	32	475	15,206	1,690
Preston-Fall	0.00	0.04	32	211	6,758	751

5767 HMA for Mainline, Ton

5875 Commercial HMA

Location	Area (SF)	Depth (ft)	Volume (CY)	Tons
W Splitter Island	360	0.25	3	7
N Splitter Island	1100	0.25	10	21
S Splitter Island	300	0.25	3	6
S Curb	200	0.25	2	4

Fill splitter islands with commercial HMA
Splitter Island cross section $=0.25^{\prime}$ Commercial HMA over 0.25^{\prime} CSBC (metric C-8882, traffic island detail)

\square Textured and Pigmented Cement Concrete Pavement, SY

Location	Width (a) (FT)	Length (b) (FT)	Area (SY)

Central Island	50	50	218
NW quadrant sidewalk buffer	4	245	85
SW quadrant buffer	6	130	68
	Total $=$	372	
	SY		

Central Island cross section $=0.92^{\prime}$ Textured \& Pigmented Cement Concrete Pavement over 0.50' CSBC (metric C-9219)
EROSION CONTROL \& PLANTING

6403	ESC Lead, Day			18	Days					
6471 Inlet Protection, EA										
As viewed using SRView \& Google Maps				9	EA					
6490	Erosion / Water Pollution Control, LS			\$5,000	LS					
6635	High Visibility Silt Fence			1000	LF					
TRAFFIC										
Roadway Markings/Curb \quad From SR View \&			Quantities							
			6807	6871	6833	9238	6840	6857	6847	6881
Begin MP	End MP	Notes	Plastic Line	Plastic Traffic Letter	Plastic Traffic Arrows	Plastic Yield Line Symbol	Sloped Mountable Curb	Plastic Crosswalk Line	Plastic Wide Dotted Entry Line	Plastic Drainage Marker
		W Splitter Island	92				92	192		
		N Splitter Island	240				240			
		S Splitter Island	80				80			
		Parking Stalls	240							
		West Leg	240	5	1	6		192	16	
		North Leg	240	5	1	6			16	
		South Leg	210	5	1	6	100		16	
Total Quantity: Units:			1,342	15	3	18	512	384	48	0
			LF	EA	EA	EA	LF	SF	LF	EA

6708 Roundabout Central Island Cement Concrete Curb 2 Inch, LF			
Notes	Width (a) (FT)	$\begin{gathered} \text { Length (b) } \\ \text { (FT) } \\ \hline \end{gathered}$	Length
Central Island	50	50	157
NW quadrant sidewalk buffer			245
SW quadrant buffer			130
			532

xxxx Painted Marking of Island

Location	Area (SF)	Area same as Item \#5875 Commercial HMA
W Splitter Island	360	
N Splitter Island	1100	
S Splitter Island	300	"
S Curb	200	"
	1,960	SF

Paint Splitter Island HMA for contrast. Use contract 8846 bid item as reference (Qty 2,126, Engineer est. $=\$ 2 /$ SF low bidder $=\$ 1.1 /$ SF

6904 Illumination System

Illumination System cost estimate based on a similar roundabout project provided \quad Total Cost $=\quad \$ 155,000 \quad$ L.S.
by NWR Traffic Duke Do.
Includes $\$ 60,000$ for Illumination, $\$ 45,000$ for Camera, $\$ 45,000$ for Data, and $\$ 5,000$ for Comm

6890 Permanent Signing

Use contract 9219 (SR 9/Francis Road Intersection Improvements) as reference for permanent signage \quad Total Cost $=\$ 20,000 \quad$ L.S. needed at roundabout: Engineer Est. $=\$ 11,000 ;$ Low Bidder $=\$ 24,000$); use $\$ 20,000$

6895 Temporary Pavement Marking - Short Duration

Notes	Begin MP	End MP	Sum of Lines	Number of Applications	LF
Edge Lines			412	2	824
Lane Lines			690	2	1,380
Item includes removal of temp. markings per Standard Spec. 8-23.5	SAY	2,204			

Traffic Control

Work Days

Assumptions for TC
Preparation and Removal
Planing / Repair / Paving
Install Traffic Splitter Islands Install Ped Cut Throughs \& DWS
Construct Central Island
Striping \& Signage
Illumination
Clean-up
Assume

* Production rates based on an 8-hour workday
*Grinding @ 9,000 SY / Day; Paving @ 1,200 Tons / Day
*Curbing @ 1,200 LF / Day; Commercial HMA @ 150 CY / Day; Painting @ 10,000 SF / Day
*1 Ped Cut Through per Day + 1 Day for DWS Install
*CSBC @ 1,000 T / Day; Curbing @ 1,200LF / Day; Concrete Pavement @ 1,000CY / Day
*Striping @ 5,000 LF / Day plus 3 day for Misc.; All signing in 1 day
* Illumination System @ 5 Days / Pole -- assume work concurrent with Signage \& Ped Cut Throughs

		Days	Hrs / Day	Qty	Hrs	Unit Cost	Units	Total Cost
6956	Sequential Arrow Sign	35	10	3	1050	\$7	HR	\$7,350
6973	Other Temporary Traffic Control	N/A	N/A	N/A	N/A	N/A	LS	\$20,000
6974	Traffic Control Supervisor	35	10	1	350	\$75	LS	\$26,250
6980	Flaggers	35	10	3	1050	\$70	HR	\$73,500
6982	Construction Signing Class A	N/A	N/A	144	N/A	\$25	SF	\$3,600
6992	Other Traffic Control Labor	35	10	2	700	\$70	HR	\$49,000
6993	Portable Changeable Message Sign	35	10	3	1050	\$10	HR	\$10,500
7447	Transportable Attenuator	N/A	N/A	2	N/A	\$18,000	EA	\$36,000
7449	Operation of TA	35	10	2	700	\$70	HR	\$49,000
7450	Repair TA	N/A	N/A	1	N/A	\$8,000	EST	\$8,000

7054 Ramp Det

Notes	Begin MP	\# of Ramps	Area (SF)
		6	60

Sidewalk \& Curb/Gutter	6700	6707	7055	7060	Asphalt wede sidewalk 245
Alignment	Conc Curb and Gutter	Conc Pedestrian Curb	Conc Sidewalk	Asphalt Sidewalk	
	150	16	116	0	
Additional SW Quad. NW quadrant sidewalk buffer			$\begin{gathered} 53 \\ 163 \\ \hline \end{gathered}$	17	
	150	16	332	17	
	LF	LF	SY	SY	

7058

Cross Street	MP	Ramp ID's	\# of Ramps	\# of Signs*

CALCULATION WORKSHEET - SECTION 1
 SR 18 MP 19.89


```
Title: SR 202/Preston Fall City Rd SE Roundabout, Parking and Sidewalk Im
WIN:
A202XXX
PIN:
``` \(\qquad\)
```

Prepared By: Lucas Rogers
Date: 7/20/2021

```

LANE MILE CALCULATION
\begin{tabular}{c|c|c|c|c|c|c|c|c|c|}
\hline Alignment & Begin MP & End MP & Type & Length & \# of Lanes & Lane Miles & Notes \\
\hline SR 202 & 21.29 & 21.89 & Thru & 0.60 & 2 & 1.20 & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{PREPARATION}

0050 Removal of Structures and Obstructions
Removal of signs and poles

\section*{145 Removing Concrete Barrier, LF}
\begin{tabular}{|c|c|c|c|}
\hline Location & MP & MP & SF \\
\hline SR 202 & 21.70 & 21.75 & 244 \\
\cline { 2 - 4 } & & & 0 \\
\hline
\end{tabular}

Remove existing 100 ' \(\times 10\) ' area - to be replaced by splitter island.

\section*{150 Removing Traffic Island, SY}

0310 Roadway Excavation Incl. Haul, CY

\section*{SURFACING}

5100 Crushed Surfacing Base Course, TON
\begin{tabular}{|c|c|c|c|c|c|}
\hline Location & Area (SF) & & \begin{tabular}{c}
Depth \\
\((\mathrm{FT})\)
\end{tabular} & \begin{tabular}{c}
Volume \\
\((\mathrm{CY})\)
\end{tabular} & Tons \\
\hline Roadway & 65441 & & 0.50 & 1212 & 2242 \\
\hline Sidewalks & 46442 & & 0.50 & 860 & 1591 \\
\cline { 5 - 6 } & & & 0 & 0 \\
\hline & & & 0 & 0 \\
\hline & & & 0 & 0 \\
\hline
\end{tabular}

Central Island cross section \(=0.92^{\prime}\) Textured \& Pigmented Cement Concrete Pavement over 0.50' CSBC (metric C-9219)
Splitter Island cross section \(=0.25\) ' Commercial HMA over 0.25' CSBC (metric C-8882, traffic island detail)

\section*{HOT MIX ASPHALT}

\section*{5711 Planing Bituminous Pavement, SY}
*Area determined using SRview and Google Maps

\section*{5767 HMA for Mainline, Ton}

5875 Commercial HMA
\begin{tabular}{|c|c|c|c|c|c|}
\hline Location & Area (SF) & Depth (ft) & Volume (CY) & Tons & \multirow{5}{*}{6 ' wide ped cut through} \\
\hline & & 0.25 & 0 & 0 & \\
\hline & & 0.25 & 0 & 0 & \\
\hline & & 0.25 & 0 & 0 & \\
\hline & & 0.25 & 0 & 0 & \\
\hline Fill splitter islands with commercial HMA & & & & 0 & Tons \\
\hline
\end{tabular}

\section*{CEMENT CONCRETE PAVEMENT}
\begin{tabular}{|c|c|c|c|}
\hline Location & Width (a) (FT) & \[
\begin{gathered}
\text { Length (b) } \\
\text { (FT) }
\end{gathered}
\] & Area (SY) \\
\hline & & & 0 \\
\hline & & & 0 \\
\hline & & & 0 \\
\hline & \multicolumn{2}{|l|}{Total \(=\)} & 0 \\
\hline
\end{tabular}

Central Island cross section \(=0.92^{\prime}\) Textured \& Pigmented Cement Concrete Pavement over 0.50' CSBC (metric C-9219)
EROSION CONTROL \& PLANTING
\begin{tabular}{|c|c|c|c|}
\hline 6403 & ESC Lead, Day & 45 & Days \\
\hline 6471 & \multirow[t]{2}{*}{\begin{tabular}{l}
Inlet Protection, EA \\
As viewed using SRView \& Google Maps
\end{tabular}} & & \\
\hline & & 9 & EA \\
\hline 6490 & Erosion / Water Pollution Control, LS & \$5,000 & LS \\
\hline 6635 & High Visibility Silt Fence & 1000 & LF \\
\hline
\end{tabular}

\section*{TRAFFIC}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Roadway Markings/Curb}} & \multirow[t]{2}{*}{From SR View \& Geoportal} & \multicolumn{9}{|c|}{Quantities} \\
\hline & & & 6807 & 6863 & 6833 & 6822 & 6841 & 6840 & 6857 & 6859 & 6881 \\
\hline Begin MP & End MP & Notes & Plastic Line & \begin{tabular}{l}
Plastic \\
Access \\
Parking \\
Space
\end{tabular} & \begin{tabular}{l}
Plastic \\
Traffic \\
Arrows
\end{tabular} & Plastic Crosshatch Marking & \begin{tabular}{l}
Precast Dual \\
Faced \\
Sloped \\
Mountable \\
Curb
\end{tabular} & \begin{tabular}{l}
Precast \\
Sloped Mountable Curb
\end{tabular} & Plastic Crosswalk Line & Plastic Stop Line & Plastic Drainage Marker \\
\hline & & Roadway & 2,132 & & 4 & 678 & 687 & 681 & 3710 & 132 & \\
\hline & & Parking & 1,860 & 7 & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & Total Quantity: & 3,992 & 7 & 4 & 678 & 687 & 681 & 3,710 & 132 & 0 \\
\hline & & Units: & LF & EA & EA & EA & LF & LF & SF & LF & EA \\
\hline
\end{tabular}

6708 Roundabout Central Island Cement Concrete Curb 2 Inch, LF

\section*{xxxx Painted Marking of Island}
\begin{tabular}{|c|c|}
\hline Location & Area (SF) \\
\hline \multirow{2}{*}{ Area same as Item \#5875 Commercial HMA } \\
\hline W Splitter Island & 0 \\
\hline N Splitter Island & 0 \\
\hline S Splitter Island & 0 \\
\hline S Curb & 0 \\
\hline & 0 \\
\hline
\end{tabular}

Paint Splitter Island HMA for contrast. Use contract 8846 bid item as reference (Qty 2,126, Engineer est. \(=\$ 2 /\) SF low bidder \(=\$ 1.1 / S F\)

\section*{6904 Illumination System}

Illumination System cost estimate based on a similar roundabout project provided Total Cost \(=\$ 155,000\) L.S.
by NWR Traffic Duke Do.
Includes \(\$ 60,000\) for Illumination, \(\$ 45,000\) for Camera, \(\$ 45,000\) for Data, and \(\$ 5,000\) for Comm

\section*{6890 Permanent Signing}

Use contract 9219 (SR 9/Francis Road Intersection Improvements) as reference for permanent signage Total Cost \(=\square \$ 20,000\) needed at roundabout: Engineer Est. \(=\$ 11,000 ;\) Low Bidder \(=\$ 24,000\)); use \(\$ 20,000\)

6895 Temporary Pavement Marking - Short Duration
\begin{tabular}{|c|c|c|c|c|c|}
\hline Notes & Begin MP & End MP & Sum of Lines & Number of Applications & LF \\
\hline Edge Lines & & & 3,992 & 2 & 7,983 \\
\hline Lane Lines & & & 0 & 2 & 0 \\
\hline \multicolumn{4}{|r|}{\multirow[t]{2}{*}{Item includes removal of temp. markings per Standard Spec. 8-23.5}} & & 7,983 \\
\hline & & & & SAY & 8,000 \\
\hline
\end{tabular}

\section*{Traffic Control}

\section*{Work Days}

Preparation and Removal Excavation
Paving
Sidewalk \& ADA \& Curbing
Landscaping
Striping \& Signage
Clean-up
Assume \(\xlongequal{2}\)\begin{tabular}{l}
29 \\
Days \\
Days \\
Days
\end{tabular}

\section*{Assumptions for TC}

3 days mob, 5 days miscellaneous
1500/CY per day
1500 Ton/Day
1500 LF/ Day curb, 500 SY/ Day sidewalk, 2 days/EA Curb Ramps
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & Days & Hrs / Day & Qty & Hrs & Unit Cost & Units & Total Cost \\
\hline 6956 & Sequential Arrow Sign & 89.2410444 & 10 & 3 & 2677 & \$7 & HR & \$18,741 \\
\hline 6973 & Other Temporary Traffic Control & N/A & N/A & N/A & N/A & N/A & LS & \$20,000 \\
\hline 6974 & Traffic Control Supervisor & 89.2410444 & 10 & 1 & 892 & \$75 & LS & \$66,931 \\
\hline 6980 & Flaggers & 89.2410444 & 10 & 3 & 2677 & \$70 & HR & \$187,406 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 6982 & Construction Signing Class A & N/A & N/A & 144 & N/A & \$25 & SF & \$3,600 \\
\hline 6992 & Other Traffic Control Labor & 89.2410444 & 10 & 2 & 1785 & \$70 & HR & \$124,937 \\
\hline 6993 & Portable Changeable Message Sign & 89.2410444 & 10 & 3 & 2677 & \$10 & HR & \$26,772 \\
\hline 7447 & Transportable Attenuator & N/A & N/A & 2 & N/A & \$18,000 & EA & \$36,000 \\
\hline 7449 & Operation of TA & 89.2410444 & 10 & 2 & 1785 & \$70 & HR & \$124,937 \\
\hline 7450 & Repair TA & N/A & N/A & 1 & N/A & \$8,000 & EST & \$8,000 \\
\hline \(\mathbf{x x x x}\) & Contractor Provided Uniformed Police Officer & 89.2410444 & 10 & 2 & 1785 & \$120 & HR & \$214,179 \\
\hline \multicolumn{9}{|l|}{"Other Temporary Traffic Control" covers traffic drums, cones, contractor piloted vehicle, etc. \(\$ 831,503\)} \\
\hline
\end{tabular}

\section*{7054 Ramp Detectable Warning Retrofit, SF}
*Ramp detectable warning retrofit area assumed at 10 SF per ramp
\begin{tabular}{|c|c|c|c|}
\hline Notes & Begin MP & \# of Ramps & Area (SF) \\
2 & on 338th Pl SE and 4 on Presto-Fall City Road SE \\
\hline & & 6 & 60 \\
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\cline { 3 - 5 } Sidewalk \& Curb/Gutter & \(\mathbf{6 7 0 0}\) & \(\mathbf{6 7 0 7}\) & \(\mathbf{7 0 5 5}\) & \(\mathbf{7 0 6 0}\) \\
\hline Alignment & \begin{tabular}{c}
Conc Curb and \\
Gutter
\end{tabular} & \begin{tabular}{c}
Conc \\
Pedestrian \\
Curb
\end{tabular} & \begin{tabular}{c}
Conc \\
Sidewalk
\end{tabular} & \begin{tabular}{c}
Asphalt \\
Sidewalk
\end{tabular} \\
\hline All Sidewalks & \multirow{4}{|c|}{5028.4} & & 5160 & \\
\hline Curb and Gutter & & & \begin{tabular}{c}
Asphalt wedge for SW Quad - 4' both sides of 8' x 60' side walk \\
sidewalk 245 x 6
\end{tabular} \\
\hline & 5,028 & 0 & 5,160 & 0 \\
\hline & LF & LF & SY & SY \\
\hline
\end{tabular}

\section*{7058 Cement Conc Curb Ramp Type, EA}

For estimating purposes only, sidewalks were considered ideal to accommodate typical ADA ramp. Designer to determine the appropriate type.
For estimating purposes only, sidewalks were considered ideal to accommodate typical ADA ramp. Designer to determine the appropriate type.
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline From Blue Beam Sketch & & & & 22 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & \\
\hline From Blue Beam Sketch & & & & 447 \\
\hline
\end{tabular}

\section*{PAVEMENT REPAIR CALCULATION}

SR: 202 MP: 21.29 to MP: 21.89 Prepared By: Lucas Rogers
Title: SR 202/Preston Fall City Rd SE Roundabout, Parking and Sidewalk Improvement
Date: 7/20/2021
WIN: A202XXX
PIN: 1202XXX

\section*{PAVEMENT REPAIR CALCULATION}

\section*{0332 Pavement Repair Excavation Including Haul, SY}
\begin{tabular}{|c|c|c|c|}
\hline Section & Alignment & Area (SY) & \\
\hline 1 & SR 202 & 74 & \\
\hline & & 80 & This is for \(100 \%\) of the total Pavement Repair due to the SY measurement \\
\hline
\end{tabular}

\section*{5739 HMA for Pavement Repair CL \(1 / 2\) In PG, TON}

Used Bid Item 5739 for a typical pavement repair material.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Section & Alignment & Depth & \begin{tabular}{c}
Area \\
(SY)
\end{tabular} & \begin{tabular}{c}
Quantity \\
(Tons)
\end{tabular} & \begin{tabular}{c}
\(+5 \%\) \\
(Tons)
\end{tabular} \\
\hline \(90 \%\) & SR 202 & 0.15 & 66 & 7 & 7 \\
\hline \(10 \%\) & SR 202 & 1.00 & 7 & 5 & 5 \\
\hline \multicolumn{6}{|l|}{} \\
\hline
\end{tabular}

\section*{Appendix 'A' - SR 202 Corridor Study Streetmix Design Concepts}

The following pages in Appendix A show various Streetmix program design concepts that were considered during the SR 202 Study concept development stage.

\section*{SR 202 Corridor Study}

\section*{Appendix " \(B\) "}

\section*{Appendix B of the SR 202 Corridor Study (Fall City/King County) includes documents and presentations from the Stakeholder and Public Engagement done as part of this study.}

\section*{SR 202 Corridor Studies - Survey Questions}

\section*{Introduction}

The Washington State Department of Transportation (WSDOT) is conducting two corridor studies on State Route 202 in east King County. The first is on SR 202 from 244th Avenue Northeast to 324th Avenue Southeast. The second is in Fall City on SR 202 between \(324^{\text {th }}\) and the Snoqualmie River Bridge at the SR 202/203 intersection.

Your feedback will help us understand your concerns and preferences on the corridor. Please take a few minutes to complete this survey and tell us about your experience traveling on SR 202 in these two sections.

For more information, the webpage for these studies is found here:
https://wsdot.wa.gov/planning/studies/sr202/multimodal-planning/home.
For questions about this survey, please contact Thomas A. Noyes - noyest@wsdot.wa.gov

\section*{(Translation links - Spanish)}

First, in considering your travel on SR 202 between 244th Avenue Northeast and downtown Fall City, please review and answer the following questions. [Map of SR 202 Corridor: \(244^{\text {th }}\) to Fall City] (INSERT SR 202 CORRIDOR MAP HERE!)
1. How often do you travel on SR 202 between 244th Avenue Northeast and Fall City?
a. Multiple times each day
b. Daily
c. Weekly
d. Monthly
e. Rarely (several times/year)
f. Never
2. How do you travel on the SR 202 corridor?
a. Private vehicle
b. Public transit - bus
c. Commercial bus/shuttle
d. Motorcycle
e. Bicycle/walk
f. Commercial vehicle (truck)
g. Carpool/vanpool
h. Rideshare (Uber/Lyft/etc.)
i. Personal Mobility Device (scooter/wheelchair/stroller/etc.)
j. Other - please specify
3. Why do you travel on the SR 202 corridor? (Select all that apply)
a. Commute to and from work
b. Commute to and from school
c. Travel for shopping or errands
d. Visiting family and friends
e. To access recreational activities
f. Travel for business and/or freight
g. Other - please specify
4. When you travel on the SR 202 corridor, which zip code
https://www.zipmap.net/Washington/King County/Seattle.htm do you usually start from? If your zip code is not shown on the map, please enter it.

5. When you travel on the SR 202 corridor, which zip code https://www.zipmap.net/Washington/King County/Seattle.htm is typically your destination? Your destination may be within the zip code you started from and please indicate as such. If your zip code is not shown on the map, please enter it.

The following maps show specific segments of the SR 202 corridor between 244th Avenue Northeast and Fall City. We would like to understand where you experience issues or concerns. For the following identified areas, please select the issues that are challenges for you. If you have other thoughts or concerns about particular locations, please describe them in the text box.
6. SR \(202-244\) th Avenue Northeast to Tolt Hill Road (MAP)
a. I don't have challenges on this section of SR 202
b. Concerns or safety issues at specific intersections or driveways
c. Vehicles drive too fast
d. Not enough lighting
e. Issues with passing vehicles
f. Other - please specify
7. Please list specific issues or concerns with intersections (Ames Lake Road, Tolt Hill Road, etc.), driveways, or other locations. [Text box.]
8. SR 202 - Tolt Hill Road Southeast intersection to 324th Avenue Southeast (Fall City limits)] (MAP)
a. I don't have challenges on this section of SR 202
b. Concerns or safety issues at specific intersections or driveways
c. Vehicles drive too fast
d. Not enough lighting
e. Issues with passing vehicles
f. Other - please specify
9. Please list specific issues or concerns with intersections (Southeast \(8^{\text {th }}\) Street, Duthie Hill Road, etc.) driveways, or other locations. Please be as specific as possible. [Text box.]

In this section of our survey, we want to get a sense of how you use SR 202 in Fall City and what issues and concerns you have. There are five geographic segments of SR 202 with a multi-part question for each.
10. SR 202 in Fall City: 324th Avenue Southeast intersection and the Chief Kanim Middle School (INSERT MAP)
a. I don't have challenges on this section of SR 202
b. Issues with pedestrians crossing SR 202 either as a pedestrian or as a driver
c. Issues turning to or from SR 202
d. Vehicles drive too fast
e. Not enough lighting
11. Other - please specify
12. Please list specific issues or concerns with crossing SR 202 as a pedestrian or issues turning to or from Chief Kanim Middle School or \(324^{\text {th }}\) Avenue Southeast.
13. SR 202 in Fall City: 332nd Avenue Southeast intersection vicinity (MAP)
a. I don't have challenges on this section of SR 202
b. Issues with pedestrians crossing SR 202 either as a pedestrian or as a driver
c. Issues turning to or from SR 202
d. Vehicles drive too fast for conditions
e. Not enough lighting
f. Other - please specify
14. Please list specific issues or concerns with crossing SR 202 as a pedestrian or issues turning to or from intersections or driveways.
15. Section Three of SR 202 in Fall City: Fall City Elementary School, \(334^{\text {th }}\) Place Southeast, and Southeast \(42^{\text {nd }}\) Place intersection (MAP)
a. a. I do not have challenges on this section of SR 202
b. Issues with pedestrians crossing SR 202 either as a pedestrian or as a driver
c. Issues turning to or from SR 202
d. Vehicles drive too fast for conditions
e. Parking related issues
f. Not enough lighting
g. Other - please specify
16. Please list specific issues or concerns with crossing SR 202 as a pedestrian or issues turning to or from intersections (\(334^{\text {th }}\) Place Southeast, Southeast \(42^{\text {nd }}\) Place, etc.) or driveways.
17. Section Four of SR 202 in Fall City: Downtown Business District, \(335^{\text {th }}\) Place Southeast to \(338^{\text {th }}\) Place Southeast in central Fall City (MAP)
a. I do not have challenges on this section of SR 202
b. Issues with pedestrians crossing SR 202 either as a pedestrian or as a driver
c. Issues turning to or from SR 202
d. Vehicles drive too fast for conditions
e. Parking related issues
f. Issues walking along SR 202 next to the Snoqualmie River
g. Not enough lighting
h. Other - please specify
18. Please list specific issues or concerns related to pedestrian crossings, walking along SR 202, or issues turning to or from intersections (\(335^{\text {th }}\) Place Southeast, \(338^{\text {th }}\) Place Southeast, etc.) or driveways.
19. Section Five of SR 202 in Fall City: Preston/Fall City Road intersection and the Snoqualmie River Bridge crossing
a. I do not have challenges on this section of SR 202
b. Issues with pedestrians crossing SR 202 either as a pedestrian or as a driver
c. Issues turning to or from SR 202
d. Vehicles drive too fast
e. Parking related issues
f. Issues walking along SR 202 next to or across the Snoqualmie River
g. Not enough lighting
h. Other - please specify
20. Please list specific issues or concerns related to pedestrian crossings, walking along SR 202, or issues turning to or from intersections (Preston-Fall City Road) or driveways.

\section*{Optional Demographic Questions}

WSDOT is interested in hearing from a wide range of people. By answering the following demographic questions, you will help us better understand who is participating in the study. Your answers are optional and confidential. We will combine your answers with others for analysis only.
21. Are you willing to answer optional demographic questions?
a. Yes
b. No
22. How did you hear about the study/survey?
a. Email
b. Social media
c. Word of mouth
d. At your place of work
e. At your school
f. News media (radio, newspaper)
23. What is your age?
a. Under 18
b. 19-24
c. 25-34
d. 35-44
e. 45-54
f. 55-64
g. 65+
24. How do you identify? (Please check all that apply)
a. Black/African-American
b. Hispanic, Latinx, or Spanish origin
c. Asian/Asian-American
d. White/Caucasian
e. American or Alaska Native/Indigenous
f. Native Hawaiian or Other Pacific Islander
g. Other
h. Prefer not to answer
25. Do you have limited mobility that affects your ability to travel along SR 900?
a. I do not have limited mobility
b. Limited sight
c. Limited hearing
d. I use assistive mobility devices
e. Other: (text box)
f. Prefer not to answer
26. What is your approximate yearly household income?
a. \(\$ 0\) to \(\$ 24,999\)
b. \(\$ 25,000\) to less than \(\$ 49,999\)
c. \(\$ 50,000\) to less than \(\$ 74,999\)
d. \$75,000 to less than \$99,999
e. \(\$ 100,000\) to less than \(\$ 124,999\)
f. \(\$ 150,000\) to \(\$ 174,999\)
g. \$175,999 to \$199,999
h. \$200,000 and up
27. What is the highest level of school you have completed or the highest degree you have received?
a. Less than high school degree
b. High school degree or equivalent (e.g., GED)
c. Some college but no degree
d. Associate degree
e. Bachelor's degree
f. Master's degree
g. Trade school
h. Other - please specify

\section*{जै WSDOT}

\section*{SR 202 Corridor Studies}

244 th Avenue NE to 324 th Avenue \(\operatorname{SE}\) SR 202 within Fall City

Thomas Noyes
Senior Transportation Planner
Management of Mobility Division
Maan Sidhu
Assistant Area Traffic Engineer King County

NOVEMBER 17, 2020

\section*{Today's meeting}
- Study background and context
- Existing conditions and needs
- Problem statement
- Goals and objectives
- Evaluation criteria
- Communications and outreach
- Next steps

- Discussion

\section*{Study Partners}

\section*{जो WSDOT}
- King County Roads Division
- King County Metro
- Fall City Community Association
- Washington State Patrol
- Washington Trucking Association
- Puget Sound Regional Council
- Tribes

\section*{Study purpose and context}
- Understand community needs, priorities, and roadway issues
- Document community vision within Fall City
- Identify strategies \& improvement concepts to improve
o Pedestrian and traveler safety
o Multimodal access
o Environment

\section*{Existing Conditions}
- Environmental conditions
- Pedestrian connectivity
- Transit

- Roadway/intersection operations and safety

\section*{Environmental Conditions}

\section*{जो WSDOT}

\section*{Flood zones and wetlands}

\section*{जो WSDOT}

\footnotetext{
—study Extent
\(\square\) Freshwater Forested/Shrub Wetland (PFO, PSS)
Freshwater Emergent Wetland (PEM)
Freshwater Pond (PUB, PAB)
Riverine
}

National Wetland Inventory - Wetlands

\section*{Transit access in Fall City}

- Transit Stops

Transit Stops near SR 202
-Study Extent

2 Miles

\section*{Corridor tour, discussion}

\section*{Problem Statement}

SR 202 in rural King County between the intersections of 244th Avenue NE and 324th Avenue SE has operational and safety performance issues.

SR 202 in Fall City lacks complete pedestrian facilities and has documented performance issues.

\section*{Draft Evaluation Criteria}
- Safety (consistency with Target Zero, Crash-reduction, etc.)
- Accessibility (pedestrian connectivity, access to transit)
- Constructability (cost, technical feasibility, etc.)
- Community Support (including preserving community character)

\section*{Communications and outreach 施WSDOT}
- Web survey
o Trip purpose
o Origins and Destinations
o User needs
- Online open house
- Webpage, online resources
7. WSDOT

Corridor Studies

SR 202 in Fall city
SR 202 within Fall City has gaps in pedestrian facilities between recreational areas, residential neighborhoods,
and businesses in Fall City. The intersection of Preston Fall City Road also remains unimproved since the completion of the roundabout at the intersection of SR 202 and SR 203. This study will assess corridor needs for SR 202 from the 324 th Ave SE intersection to the
roundabout junction at SR 203. It will document stratcoundabout junction at SR 203. It will document strat accessibility for all users.
- Understand travel patterns and issues
- Obtain feedback from residents and stakeholders on existing and future corridor needs, performance gaps, and other concerns
- Develop strategies for improved bicycle, pedestrian, and transit access, safety, and operations
- Integrate strategies with partner efforts, such as the Fall City Community Association and others

\section*{Schedule}

\section*{जो WSDOT}

Summer - Fall 2020
- Data collection
- Engagement and survey

Fall 2020 - Winter 2021
- Concept development
- Ongoing engagement

\section*{Summer 2021}
- Final report available online

\section*{जो WSDOT}

\section*{Questions?}

Thomas Noyes: Thomas.Noyes@wsdot.wa.gov
Maan Sidhu: Maan.Sidhu@wsdot.wa.gov

Studies Webpage: https://bit.ly/SR202studies

\title{
SR 202 Corridor-Study Final Stakeholder Committee Meeting
}

December 9, 2021

\author{
Attendees \\ Maan Sidhu - WSDOT NW Traffic; Thomas Noyes - WSDOT MoM Division; April Delchamps WSDOT MoM Division; Alex Henry - WSDOT MoM Division; Angela Donaldson - Fall City Community Association; Kirk Harris - Fall City Metropolitan Park District; Amy Biggs - Snoqualmie Valley Transportation; Salwa Raphael - Hopelink Mobility Team; Jim Ishimaru - King County Roads; Keith Brown - King County Roads; Linda Salhah - City of Sammamish; Doug McIntyre - City of Sammamish; Corey Holder - King County Transit; Carolyn Malcom - Snoqualmie Valley School District; Carrie Lee Gagnon - Fall County Community Association
}

\section*{Introductions / Overview}

Thomas Noyes, WSDOT, welcomed attendees to the meeting and facilitated introductions. Thomas then led the group through an overview presentation that summarized the study purpose and context, corridor existing conditions, and the results of the public survey.

\section*{Evaluation Criteria/Concepts}

Thomas presented the evaluation criteria that was used for the identification and screening of improvements. These criteria were shared with the Stakeholder Committee at its initial meeting, and include safety, accessibility, constructability, and community support.

Maan Sidhu, WSDOT, walked through the proposed concepts which include various non-motorized and speed management improvements in the downtown Fall City area, and the installation of roundabouts at the Preston/Fall City Rd, Ames Lake Rd, and Tolt Hill Rd intersections. The revised alignment of SR 202 through central Fall City will include 62 'back-in' parking stalls and there will be 38 parallel parking stalls on the north side of SR 202 through central Fall City. This represents a slight loss of parking from the current configuration, however, current parallel parking stalls on the north side of SR 202 are not striped or delineated so this will better arrange and organize parking on SR 202. Also, 'back-in' parking on the south side of SR 202 will allow for safer parking access and operations on SR 202 in Fall City.

Maan briefly described the planning-level cost estimates as follows: Ames Lake Road Roundabout = \(\mathbf{\$ 7 M}\); NE Tolt Hill Road I/S \(=\mathbf{\$ 1 0 M}\); and the central Fall City improvement concept(s) \(=\mathbf{\$ 1 0 B}\) (Preston - FC Road compact roundabout, 14 -foot pedestrian-bike lane on the N/S, various pedestrian crossings, realigned parking, SE \(334^{\text {th }}\) Avenue \(/ 42^{\text {nd }}\) Street SE intersection design, etc.)

\section*{Concept Comments/Discussion}

Comment: Angela Donaldson, Fall City Community Association (FCCA), asked about the potential to relocate the school bus pick-up/drop-off location for the nearby Fall City Elementary School
Response: Thomas indicated that the study team had met with the school administration and discussed this topic. Coordination will continue as the project proceeds to design

Comment: Angela Donaldson, FCCA, inquired if the study team had reached out to Aroma Coffee Co and Treehouse Supply to discuss potential delivery impacts, and offered to provide contact information Response: Maan indicated that the study team would reach out to the business owners.

Comment: Carrie Lee, FCCA, commented on continued issues with traffic on alleyways adjacent to the corridor
Response: Thomas indicated that the study team will continue to coordinate with King County, who have jurisdiction over the alleyways

Comment: Salwa Raphael Hopelink, commented that high speeds along the corridor can make crossing the road as a pedestrian difficult, and asked if any enhanced crossing treatments were being applied to the proposed crosswalks. Angela Donaldson (FCCA) inquired if crossing flags could be provided Response: Maan shared that the crosswalks at the proposed Preston-Fall City Rd roundabout will be raised and that proposed crosswalks along the corridor will included Rectangular Rapid Flashing Beacons (RRFB). He explained the proposed installation of the roundabout, the addition of on-street parking, and narrowing of travel lanes will work to calm traffic and make crossing easier and safer. Crossing flags are a low-cost improvement that could definitely be considered.

Comment: Angela Donaldson, FCCA, inquired if the proposed roundabout at Preston-Fall City Road would have impacts on the adjacent Last Frontier Saloon or Roadhouse Restaurant and Inn
Response: Maan indicated that the roundabout concept would have some impact, and reduce the area currently being used for parking. The study team will discuss the concept with impacted business owners

Comment: Amy Biggs, Snoqualmie Valley Transportation, commented that the proposed concept does not account for the King County Metro Stop along SE \(42^{\text {nd }} \mathrm{Pl}\) that would need to be relocated. They also inquired if proposed parking changes would impact the other existing bus stops along the corridor.
Response: Maan indicated that the study team will facilitate a follow up conversation with the transit providers to address these concerns

Comment: Salwa Raphael, Hopelink, expressed concerns about vehicle speeds approaching the proposed roundabout at Tolt Hill Rd and asked if any measures were being taken to reduce the speed limit Response: Maan indicated that the roundabout will include advance warming signage to encourage drivers to slow down, and a reduced advisory speed limit within the roundabout. Maan also added that the physical elements of the roundabout are designed in a way that encourage drivers to slow down

Comment: Amy Biggs, Snoqualmie Valley Transportation, asked about the funding source for the proposed improvements and requested that the report include a list of potential funding sources Response: Thomas clarified that none of the concepts presented are currently funded, but that WSDOT will continue to explore various funding strategies and coordinate with partners on implementation

\section*{Next Steps and Follow-up Actions}

Thomas concluded the presentation by discussing next steps which include presenting findings to FCCA, finalizing the study report, and working with stakeholders to implement plan recommendations. Angela Donaldson confirmed that the study team was scheduled to present to FCCA at their January \(4^{\text {th }}\) meeting
and recommended that the shortened presentation focus on non-motorized improvements and changes to parking.

Thomas and Maan thanked the committee members for their participation and the meeting was ended.

\section*{Action Items:}
- Study team to coordinate with business owners along the corridor whose deliveries/parking may be impacted by study recommendations
- Study team to facilitate meeting with transit providers to discuss impacts to existing transit stops
- Today's presentation and meeting summary will be sent out to meeting participants.

Washington State Department of Transportation

September 30, 2020
The Honorable Jaison Elkins
The Muckleshoot Indian Tribe
39015 172 \(^{\text {nd }}\) Avenue SE
Auburn, WA 98092

RE: Consultation regarding the SR 202 Studies

\section*{Dear Chairman Elkins:}

The Washington State Department of Transportation (WSDOT) Management of Mobility Division has commenced a pair of studies of SR 202 in east King County (see attached map). We invite the Tribe to participate in this study.

The goal of these SR 202 studies is to conduct a high-level assessment of multimodal, access, safety, traffic operations, and related performance gaps on the SR 202 corridor from the SR \(202 / 244^{\text {th }}\) Avenue NE intersection to the SR 202/SR 203 intersection in Fall City. These two studies will document strategies and concepts to improve operations, safety performance, and accessibility for all SR 202 corridor users.

We are establishing a stakeholder committee for the SR 202 studies and invite your staff to participate. We expect the stakeholder committee to meet twice during the course of these studies, which will conclude by June 2021. All meetings will be held virtually, and we plan to conduct additional document reviews via email. We expect the kickoff meeting for stakeholder committee to be held in mid-to-late October of this year. We are also happy to meet separately with the Tribe if requested. If a project proposal were to move forward as a result of these studies, formal government-to-government consultation will be initiated during NEPA evaluation.

We would appreciate your response to this invitation letter, acknowledging the Tribe's interest in participating in the study. If you have any further questions or would like additional information about the SR 202 studies, please contact the study lead, Thomas Noyes at (206) 464-1272 or noyest@wsdot.wa.gov or myself at (206) 464-1264 or mayhewr@wsdot.wa.gov

Sincerely,

Robin Mayhew, AICP
WSDOT Management of Mobility Director

RM:tn
cc: Laura Murphy, Cultural Resources
Glen St. Amant, Natural Resources
Riley Patterson, Planning
John Daniels, WITPAC
Cameron Kukes, WSDOT Northwest Region Environmental Manager Megan Cotton, WSDOT Executive Tribal Liaison
Eliza McGovern, WSDOT Northwest Region Tribal Liaison and Restoration Lead

September 30, 2020
The Honorable Robert de los Angeles
The Snoqualmie Indian Tribe
Post Office Box 969
Snoqualmie, WA. 98065

RE: Consultation regarding the SR 202 Studies

Dear Chairman de los Angeles:
The Washington State Department of Transportation (WSDOT) Management of Mobility Division has commenced a pair of studies of SR 202 in east King County (see attached map). We invite the Tribe to participate in this study.

The goal of these SR 202 studies is to conduct a high-level assessment of multimodal, access, safety, traffic operations, and related performance gaps on the SR 202 corridor from the SR \(202 / 244^{\text {th }}\) Avenue NE intersection to the SR 202/SR 203 intersection in Fall City. These two studies will document strategies and concepts to improve operations, safety performance, and accessibility for all SR 202 corridor users.

We are establishing a stakeholder committee for the SR 202 studies and invite your staff to participate. We expect the stakeholder committee to meet twice during the course of these studies, which will conclude by June 2021. All meetings will be held virtually, and we plan to conduct additional document reviews via email. We expect the kickoff meeting for stakeholder committee to be held in mid-to-late October of this year. We are also happy to meet separately with the Tribe if requested. If a project proposal were to move forward as a result of these studies, formal government-to-government consultation will be initiated during NEPA evaluation.

We would appreciate your response to this invitation letter, acknowledging the Tribe's interest in participating in the study. If you have any further questions or would like additional information about the SR 202 studies, please contact the study lead, Thomas Noyes at (206) 464-1272 or noyest@wsdot.wa.gov or myself at (206) 464-1264 or mayhewr@wsdot.wa.gov

Sincerely,

Robin Mayhew, AICP
WSDOT Management of Mobility Director

RM:tn
cc: Steven Mullen-Moses, Cultural Resources
Cindy Spiry, Natural Resources
Jaime Martin, Planning
Cameron Kukes, WSDOT Northwest Region Environmental Manager Megan Cotton, WSDOT Executive Tribal Liaison
Eliza McGovern, WSDOT Northwest Region Tribal Liaison and Restoration Lead

Washington State Department of Transportation

September 30, 2020
The Honorable Shawn Yanity
Stillaguamish Tribe of Indians
3322 236 \({ }^{\text {th }}\) Avenue NE, Arlington, WA.

RE: Tribal Participation in the SR 202 Study

Dear Chairman Yanity:
The Washington State Department of Transportation (WSDOT) Management of Mobility Division has commenced a pair of studies of SR 202 in east King County. We invite the Tribe to participate in this study.

The goal of these SR 202 studies is to conduct a high-level assessment of multimodal, access, safety, traffic operations, and related performance gaps on the SR 202 corridor from the SR \(202 / 244^{\text {th }}\) Avenue NE intersection to the SR 202/SR 203 intersection in Fall City. These two studies will document strategies and concepts to improve operations, safety performance, and accessibility for all SR 202 corridor users.

We are establishing a stakeholder committee for the SR 202 studies and invite your staff to participate. We expect the stakeholder committee to meet twice during the course of these studies, which will conclude by June 2021. All meetings will be held virtually, and we plan to conduct additional document reviews via email. We expect the kickoff meeting for stakeholder committee to be held in mid-to-late October of this year. We are also happy to meet separately with the Tribe if requested. If a project proposal were to move forward as a result of these studies, formal government-to-government consultation will be initiated during NEPA evaluation.

We would appreciate your response to this invitation letter, acknowledging the Tribe's interest in participating in the study. If you have any further questions or would like additional information about these studies, please contact the study lead, Thomas Noyes at (206) 464-1272 or noyest @wsdot.wa.gov or myself at (206) 464-1264 or mayhewr@,wsdot.wa.gov

Sincerely,

Robin Mayhew, AICP
WSDOT Management of Mobility Director

RM:tn
cc:
Kerry Lyste, Cultural Resources
Sam Barr, Cultural Resources
Patrick Stevenson, Natural Resources
Casey Stevenson, Planning
Cameron Kukes, WSDOT Northwest Region Environmental Planning Manager
Megan Cotton, WSDOT Executive Tribal Liaison
Eliza McGovern, WSDOT Northwest Region Tribal Liaison and Restoration Lead

Washington State Department of Transportation

September 30, 2020
The Honorable Teri Gobin
The Tulalip Tribes
6406 Marine Drive
Tulalip, WA. 98271

RE: Consultation regarding the SR 202 Studies

\section*{Dear Chairperson Gobin:}

The Washington State Department of Transportation (WSDOT) Management of Mobility Division has commenced a pair of studies of SR 202 in east King County. We invite the Tribe to participate in this study.

The purpose of these two SR 202 studies is to identify and address current traffic operations, traffic growth, multimodal needs/performance gaps on the SR 202 corridor from the SR \(202 / 244^{\text {th }}\) Avenue NE intersection to the SR 202/SR 203 intersection in Fall City. These two studies will document strategies and concepts to improve operations, safety performance, and accessibility for all SR 202 corridor users.

We are establishing a stakeholder committee for the SR 202 studies and invite your staff to participate. We expect the stakeholder committee to meet twice during the course of these studies, which will conclude by June 2021. All meetings will be held virtually, and we plan to conduct additional document reviews via email. We expect the kickoff meeting for stakeholder committee to be held in mid-to-late October of this year. We are also happy to meet separately with the Tribe if requested. If a project proposal were to move forward as a result of these studies, formal government-to-government consultation will be initiated during NEPA evaluation.

We would appreciate your response to this invitation letter, acknowledging the Tribe's interest in participating in the study. If you have any further questions or would like additional information about these studies, please contact the study lead, Thomas Noyes at (206) 464-1272 or noyest@wsdot.wa.gov or myself at (206) 464-1264 or mayhewr@wsdot.wa.gov

Sincerely,

Robin Mayhew, AICP
WSDOT Management of Mobility Director

RM:tn
cc:
Richard Young, Cultural Resources
Kurt Nelson, Natural Resources
Christina Parker, Planning
Teresa Sheldon, WITPAC
Cameron Kukes, WSDOT Northwest Region Environmental Manager
Megan Cotton, WSDOT Executive Tribal Liaison
Eliza McGovern, WSDOT Northwest Region Tribal Liaison and Restoration Lead

Washington State Department of Transportation

September 30, 2020
The Honorable Delano Saluskin
Yakama Nation
Post Office Box 151
Toppenish, WA 98948
RE: Tribal Participation in the SR 202 Study

\section*{Dear Chairman Saluskin:}

The Washington State Department of Transportation (WSDOT) Management of Mobility Division has commenced a pair of studies of SR 202 in east King County. We invite the Tribe to participate in this study.

The goal of these SR 202 studies is to conduct a high-level assessment of multimodal, access, safety, traffic operations, and related performance gaps on the SR 202 corridor from the SR \(202 / 244^{\text {th }}\) Avenue NE intersection to the SR 202/SR 203 intersection in Fall City. These two studies will document strategies and concepts to improve operations, safety performance, and accessibility for all SR 202 corridor users.

We are establishing a stakeholder committee for the SR 202 studies and invite your staff to participate. We expect the stakeholder committee to meet twice during the course of these studies, which will conclude by June 2021. All meetings will be held virtually, and we plan to conduct additional document reviews via email. We expect the kickoff meeting for stakeholder committee to be held in mid-to-late October of this year. We are also happy to meet separately with the Tribe if requested. If a project proposal were to move forward as a result of these studies, formal government-to-government consultation will be initiated during NEPA evaluation.

We would appreciate your response to this invitation letter, acknowledging the Tribe's interest in participating in the study. If you have any further questions or would like additional information about these studies, please contact the study lead, Thomas Noyes at (206) 464-1272 or noyest@.wsdot.wa.gov or myself at (206) 464-1264 or mayhewr@,wsdot.wa.gov

Sincerely,

Robin Mayhew, AICP
WSDOT Management of Mobility Director

RM:tn
cc:
Casey Barney, Cultural Resources
Elizabeth Sanchey, Natural Resources
Alvin Pinkham, Planning \& WITPAC
Cameron Kukes, WSDOT Northwest Region Environmental Planning Manager Megan Cotton, WSDOT Executive Tribal Liaison
Eliza McGovern, WSDOT Northwest Region Tribal Liaison and Restoration Lead```

[^0]: UNDER 23 U.S. CODE §148 AND 23 U.S. CODE § 409, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION MENTIONED OR ADDRESSED IN SUCH REPORTS, SURVEYS, SCHEDULES, LISTS, OR DATA.

[^1]: UNDER 23 U.S. CODE $\S 148$ AND 23 U.S. CODE § 409, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION MENTIONED OR ADDRESSED IN SUCH REPORTS, SURVEYS, SCHEDULES, LISTS, OR DATA.

[^2]: UNDER 23 U.S. CODE § 148 AND 23 U.S. CODE § 409, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION MENTIONED OR ADDRESSED IN SUCH REPORTS, SURVEYS, SCHEDULES, LISTS, OR DATA.

[^3]: UNDER 23 U.S. CODE $\S 148$ AND 23 U.S. CODE § 409, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION MENTIONED OR ADDRESSED IN SUCH REPORTS, SURVEYS, SCHEDULES, LISTS, OR DATA.

[^4]: UNDER 23 U.S. CODE $\S 148$ AND 23 U.S. CODE § 409, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION MENTIONED OR ADDRESSED IN SUCH REPORTS, SURVEYS, SCHEDULES, LISTS, OR DATA

[^5]: UNDER 23 U.S. CODE § 148 AND 23 U.S. CODE § 409, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION MENTIONED OR ADDRESSED IN SUCH REPORTS, SURVEYS, SCHEDULES, LISTS, OR DATA.

[^6]: UNDER 23 U.S. CODE $\S 148$ AND 23 U.S. CODE § 409, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION

[^7]: UNDER 23 U.S. CODE $\S 148$ AND 23 U.S. CODE § 409, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION MENTIONED OR ADDRESSED IN SUCH REPORTS, SURVEYS, SCHEDULES, LISTS, OR DATA

[^8]: UNDER 23 U.S. CODE $\S 148$ AND 23 U.S. CODE § 409, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION MENTIONED OR ADDRESSED IN SUCH REPORTS, SURVEYS, SCHEDULES, LISTS, OR DATA

[^9]: UNDER 23 U.S. CODE $\S 148$ AND 23 U.S. CODE § 409, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION

[^10]: UNDER 23 U.S. CODE § 148 AND 23 U.S. CODE § 409, SAFETY DATA, REPORTS, SURVEYS, SCHEDULES, LISTS COMPLIED OR COLLECTED FOR THE PURPOSE OF IDENTIFYING, EVALUATING, OR PLANNING THE SAFETY ENHANCEMENT OF POTENTIAL CRASH SITES, HAZARDOUS ROADWAY CONDITIONS, OR RAILWAY-HIGHWAY CROSSINGS ARE NOT SUBJECT TO DISCOVERY OR ADMITTED INTO EVIDENCE IN A FEDERAL OR STATE COURT PROCEEDING OR CONSIDERED FOR OTHER PURPOSES IN ANY ACTION FOR DAMAGES ARISING FROM ANY OCCURRENCE AT A LOCATION

[^11]: SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pfy Ltd | sidrasolutions.com
 Organisation: WASHINGTON STATE DEPARTMENT OF TRANSPORTATION I Licence: NETWORK / Enterprise | Processed: Tuesday,
 February 8, 2022 1:42:29 PM
 Project: J:JUCO Traffici202\SR 202 - MP 13-20.64-21.82 244th-324th-Fall City Corridor Study Sidra\SR 202 Roundabouts.sip9

[^12]: SIDRA INTERSECTION 9.0 | Copyright (c) 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
 Organisation: WASHINGTON STATE DEPARTMENT OF TRANSPORTATION | Licence: NETWORK/Enterprise | Processed: Wednesday,
 February 9, 2022 8:08:04 AM
 Project: J.aUCO Trafficl202ISR 202 - MP 13-20.64-21.82 244th-324th-Fall City Corridor StudylSynchro_SidralSR 202 Roundabouts.sip9

[^13]: Central Island cross section $=0.92^{\prime}$ Textured \& Pigmented Cement Concrete Pavement over 0.50' CSBC (metric C-9219) Splitter Island cross section $=0.25^{\prime}$ Commercial HMA over 0.25' CSBC (metric C-8882, traffic island detail)

[^14]: Central Island cross section $=0.92^{\prime}$ Textured \& Pigmented Cement Concrete Pavement over 0.50' CSBC (metric C-9219)

